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The Milnor Fibration

For a nonzero holomorphic function germ f : (Cn+1, 0)→ (C, 0),
we have the Milnor fibration

f : Bε ∩ f −1(Dδ \ {0})→ Dδ \ {0}

for small enough ε� δ > 0.

This is a locally trivial fibration whose fiber is a smooth manifold
— the fiber’s reduced homology is related somehow to the
singularities of the hypersurface germ (f −1(0), 0).
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The Question of Deformations

Suppose now that we have a holomorphic germ of a deformation of
f given by

F : (Cn+1 × Cu, 0× 0)→ (C, 0),

where we think of (Cu, 0) as our (smooth) space of parameters.

Question

Letting π : Cn+1 × Cu → Cu be the projection and ∆ the
discriminant of F × π, does

F × π : (Bε × Bγ) ∩ F−1(Dδ)→ Dδ × Bγ

define a smooth locally trivial fibration over the complement of ∆
for small enough ε� δ, γ > 0?
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Elementary Facts

If f −1(0) has an isolated singularity at the origin, then the
answer is always yes.

This lets us completely understand the homology of the
Milnor fiber in the isolated case by perturbing our function
slightly to break the critical locus up into Morse points. (More
on this in a second!)

In general, the answer is no; consider F ((x , y , z), t) = xy − tz .
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Prior Work

There has been a lot of work over the past several decades by
Siersma and his school dealing with low-dimensional special
cases, particularly the 1D case.

Based on this, Bobadilla has a theory of “morsification
relative to an ideal” which gives circumstances in which we
can hold the positive-dimensional parts of the critical locus
fixed and move around the zero-dimensional stuff to split off
some Morse points.

Massey has invariants called Lê numbers whose constancy at
the origin in a family implies the consistency of the Milnor
fiber; however, this requirement is too stringent for any kind
of splitting to occur.
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Results Using Scheme Structure

We can give a much more comprehensive condition under which
the Milnor fiber varies consistently using algebra:

Theorem

The answer to our question is yes as long as the scheme-theoretic
critical locus of F × π is flat over the parameter space Cu at the
origin — that is, so long as the natural map of convergent power
series rings

C{t1, . . . , tu} →
C{x0, . . . , xn, t1, . . . , tu}

( ∂F∂x0 , . . . ,
∂F
∂xn

)

is flat.
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Motivation and Algebraic Background
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The Milnor Number

In the case where f defines an isolated singularity, the homology of
the Milnor fiber is determined completely by the non-reduced
structure of the critical locus — in particular, by the Milnor
number

µf := dimC
C{x0, . . . , xn}
( ∂f∂x0 , . . . ,

∂f
∂xn

)
.

If we look at ft = f + tg for g a generic linear form, we see that,
for small t, ft has µf Morse critical points near the origin, each of
which contributes a single Z-summand to the nth reduced
homology of the smooth fiber:

H̃k(Ff ;Z) =

{
Z⊕µf k = n

0 k 6= n
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The Milnor Number (cont.)

Question

Why, intuitively, should the number of Morse points we get by a
small perturbation have anything to do with µf as defined?

To answer this, we want to be able to say that the critical locus of
ft remains consistent as we vary t in some way that respects the
non-reduced structure. This is precisely the algebro-geometric
notion of flatness.
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Flatness

We say that a map φ : X → Y of schemes or complex-analytic
spaces is flat at x ∈ X if −⊗OY ,φ(x)

OX ,x is an exact functor.

Flatness is ubiquitous in algebraic geometry as the correct
notion of what it means to have a “family” or “deformation”
of schemes, sheaves, etc. — concretely, this is because
flatness is equivalent to the triviality of the normal cone to the
fiber.

If Y is smooth and one-dimensional, flatness is the same as
the condition that no component (irreducible or embedded)
be mapped to a single point. (A component is a closed
subset which is an irreducible component of the support of
some section of the structure sheaf.)
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Flatness (cont.)

Non-Example

The map C{x} → C{x , y , z}/(xz , yz , z2) is not flat.
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Flatness (cont.)

Example

The map C{x} → C{x , y , z}/(yz , (z − x2)z) is flat.
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The Isolated Case

Proposition

If F defines an isolated singularity at the origin, then the map

C{t1, . . . , tu} →
C{x0, . . . , xn, t1, . . . , tu}

( ∂F∂x0 , . . . ,
∂F
∂xn

)

is automatically flat.

This explains why the Milnor number is the same as the number of
Morse points we get on perturbation — for isolated singularities
both the flatness condition and the consistency of the Milnor fiber
hold without additional hypotheses.
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Main Theorem and Consequences

Alex Hof

Consistency of Milnor Fibers for Deformations of Arbitrary-Dimensional Hypersurface Singularities



Setup and Introduction Motivation and Algebraic Background Main Theorem and Consequences Conclusion

Theorem (again)

Given a holomorphic germ of a deformation of a hypersurface
singularity

F : (Cn+1 × Cu, 0× 0)→ (C, 0)

such that the critical locus varies consistently in the sense that

C{t1, . . . , tu} →
C{x0, . . . , xn, t1, . . . , tu}

( ∂F∂x0 , . . . ,
∂F
∂xn

)

is flat, the Milnor fiber varies consistently in the sense that

F × π : (Bε × Bγ) ∩ F−1(Dδ)→ Dδ × Bγ

defines a smooth locally trivial fibration over the complement of
the discriminant for small enough ε� δ, γ > 0.
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Proof idea

Using Thom’s first isotopy lemma, we see that the main challenge
is to produce evidence that the smooth fibers of F are transverse
to the boundary sphere Sε.

This can be accomplished by a lifting of vector fields tangent to
the fibers — that is, it works because the flatness of the critical
locus of F is equivalent to the property that any vector field germ
satisfying Wf = 0 can be lifted to a family W̃ satisfying W̃ F = 0.
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Corollary (Scheme Structure Sees Fiber Changes)

Let f be a holomorphic function and C the critical locus of f . If
Cred is smooth and C has no embedded components, then the
diffeomorphism type of the (transversal) Milnor fiber is locally
constant along C .

Proof idea

Construct a deformation by translations of f (or its restriction to a
transversal slice) with parameter space Cred.
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Milnor Fiber Homology Through Deformations

Example

Let f = x2y2 + y2z2 + z2x2 − x2y2z2. We use a sequence of
deformations to compute the reduced homology of the Milnor fiber.

First we pull the fuzz away from the origin:
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Milnor Fiber Homology Through Deformations

Example

Let f = x2y2 + y2z2 + z2x2 − x2y2z2. We use a sequence of
deformations to compute the reduced homology of the Milnor fiber.
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Milnor Fiber Homology Through Deformations

Example

Let f = x2y2 + y2z2 + z2x2 − x2y2z2. We use a sequence of
deformations to compute the reduced homology of the Milnor fiber.

Finally, we get the fiber at the origin in a form that’s easy to
compute:

Alex Hof

Consistency of Milnor Fibers for Deformations of Arbitrary-Dimensional Hypersurface Singularities



Setup and Introduction Motivation and Algebraic Background Main Theorem and Consequences Conclusion

Milnor Fiber Homology Through Deformations (cont.)

So, in summary, for f = x2y2 + y2z2 + z2x2 − x2y2z2, we can use
the main theorem to pull 16 Morse points out of the critical locus,
each of which contributes a vanishing cycle in degree 2. What’s
left over can be deformed into xyz , whose Milnor fiber is
well-known to be a torus (C∗)2 — hence, for our original f , we can
apply results of Dimca to get a direct sum decomposition

H̃k(Ff ;Z) =


0 k = 0

Z⊕2 k = 1

Z⊕17 k = 2

0 k > 2.
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Conclusion
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Remarks on the Converse

Question

Is the flatness condition necessary as well as sufficient for the
Milnor fiber to vary consistently?

C is flat vector fields lift partial Thom AF×π

Thom AF×π fibration result

?

?
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To-do List

Some things that still need doing:

Sort out the mess on the previous slide

Find a more reliable method of constructing these
deformations for a given f

See what we can say about open questions (Lê conjecture,
Bobadilla conjecture, etc.) from this perspective

Classify the (equivalence classes of) singularities that can’t be
split further; calculate their Milnor fibers; arrive at a complete
description of the Milnor fiber homology from the structure of
the critical locus

Generalize in various directions (CIS, real Milnor fibrations,
etc.)

Alex Hof

Consistency of Milnor Fibers for Deformations of Arbitrary-Dimensional Hypersurface Singularities



Setup and Introduction Motivation and Algebraic Background Main Theorem and Consequences Conclusion

To-do List

Some things that still need doing:

Sort out the mess on the previous slide

Find a more reliable method of constructing these
deformations for a given f

See what we can say about open questions (Lê conjecture,
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Thank You!
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