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Review: The Milnor Fibration

Given a holomorphic function germ f : (Cn+1, 0) → (C, 0), we
take its restriction to Bε ∩ f −1(Dδ) for 1 ≫ ε ≫ δ > 0;
throwing away the potentially singular fiber over the origin, we
get a smooth locally trivial Milnor fibration over D∗

δ . Denote
its fiber by Ff .

The homological structure of Ff is related somehow to the
singular structure of (f −1(0), 0).

E.g., Milnor-Kato-Matsumoto: H̃i (Ff ) = 0 for
i ̸∈ [n − dimC Sing0(f

−1(0)), n]
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Study Through Deformations

Question

When will a small perturbation of f preserve Ff ?

When f has an isolated singularity at 0 — this is what lets
us compute H∗(Ff ) by perturbing to a Morse function.

(D. Massey) When the perturbation preserves the Lê
numbers at 0 — this is too rigid for the kind of splitting we
have in the isolated case.

(J. F. de Bobadilla, R. Pellikaan, ...) When the perturbation is
through an ideal with respect to which f has finite extended
codimension — this can split off isolated singularities, but
requires the higher-dimensional components to be fixed.
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numbers at 0 — this is too rigid for the kind of splitting we
have in the isolated case.

(J. F. de Bobadilla, R. Pellikaan, ...) When the perturbation is
through an ideal with respect to which f has finite extended
codimension — this can split off isolated singularities, but
requires the higher-dimensional components to be fixed.

Alex Hof

Milnor Fiber Consistency for Deformations of Arbitrarily-Singular Hypersurfaces



Setup and Introduction Structure of Analytic Schemes Main Theorem Conclusion

Study Through Deformations

Question

When will a small perturbation of f preserve Ff ?

When f has an isolated singularity at 0 — this is what lets
us compute H∗(Ff ) by perturbing to a Morse function.

(D. Massey) When the perturbation preserves the Lê
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An Algebro-Geometric Answer

Consider

F : (Cn+1 × Cu, 0) → (C, 0) a holomorphic deformation of f ,

π : (Cn+1 × Cu, 0) → (Cu, 0) the projection to the parameter
space,

CF×π = V ( ∂F∂x0 , . . . ,
∂F
∂xn

) the critical locus, and

∆ = (F × π)(CF×π) the discriminant.

Theorem

Suppose CF×π is flat over Cu at the origin. Then

F × π : (Bε × Bγ) ∩ F−1(Dδ) → Dδ × Bγ

defines a smooth locally trivial fibration over the complement of ∆̄
for 1 ≫ ε ≫ δ, γ > 0.
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Nonreduced Structure

To understand the flatness requirement, we need to be a bit
more careful about the structure of CF×π.

In the isolated case, Cf is set-theoretically always just a point.

However, if we account for the nonreduced behavior — that
is, consider it as a “point with infinitesimal fuzz” — we see
that it is just the spectrum of the Milnor algebra
OCn+1,0/(

∂f
∂x0

, . . . , ∂f
∂xn

) and hence determines the homology of
Ff completely.

By analogy, we’ll consider

CF×π = V ( ∂F∂x0 , . . . ,
∂F
∂xn

) = SpecanOCn+1×Cu ,0/(
∂F
∂x0

, . . . , ∂F
∂xn

)

as an analytic scheme (C-analytic space).
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Flatness: The Scheme-Theoretic Notion of Consistency

A map R → S of rings is flat if −⊗R S is an exact functor.

A map ϕ : X → Y of locally ringed spaces is flat at x ∈ X if
the corresponding map of local rings OY ,ϕ(x) → OX ,x is flat.

So, for us, the flatness requirement is to say that the natural
map

C{t1, . . . , tu} → C{x0, . . . , xn, t1, . . . , tu}
( ∂F∂x0 , . . . ,

∂F
∂xn

)

of convergent power series rings is flat.
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Flatness: The Scheme-Theoretic Notion of Consistency

Flatness is ubiquitous in algebraic geometry as the correct
notion of what it means to have a “family” or “deformation”
of schemes, sheaves, etc.

(H. Hironaka(?)) Flatness at a point is equivalent to the local
triviality of the normal cone to the fiber over the tangent cone
of the base.

If Y is one-dimensional and smooth, then flatness is
equivalent to the requirement that no component, irreducible
or embedded, be mapped to a single point.
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A Non-Flat Map

Non-Example

The map C{x} → C{x , y , z}/(xz , yz , z2) is not flat.
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A Flat Map

Example

The map C{x} → C{x , y , z}/(yz , (z − x2)z) is flat.
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Aside on the Isolated Case

If f defines an isolated singularity, then CF×π will always be
flat over Cu.

This explains why the algebraic Milnor number is the same as
the Morse-theoretic one — the flatness forces the consistency
of number of points in the fiber when counted with
multiplicity.
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Interpretation of the Theorem

Theorem (again)

Suppose CF×π is flat over Cu at the origin. Then

F × π : (Bε × Bγ) ∩ F−1(Dδ) → Dδ × Bγ

defines a smooth locally trivial fibration over the complement of ∆̄
for 1 ≫ ε ≫ δ, γ > 0.

That is: If the critical loci of a family of holomorphic function
germs vary consistently (in the sense of flatness), then their local
smooth fibers vary consistently as well (in the sense that they fit
together into a smooth locally trivial fibration).
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Example Use

Example

Let f = x3 + xy2z. We compute the reduced homology of the
Milnor fiber by the deformation F = (x2 + y2z − 5t2)(x − t).
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Example Use

Example

Let f = x3 + xy2z. We compute the reduced homology of the
Milnor fiber by the deformation F = (x2 + y2z − 5t2)(x − t).

The critical locus looks like this and deforms to this:
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Computing Homology

(D. Siersma) Express the Milnor fiber
homology as the (shifted) relative
homology of (ft

−1(Dδ), ft
−1(v)).

(D. Siersma) This can be computed
locally at each critical value.

In this case the bits above −40
27 t

3 and 8t3

are D∞ singularities, so each contributes
a Z-summand in degree 2.
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Computing Homology

The part over the origin is locally of type
A∞, but it now has some topology, being
given by the equations x = t, y2z = 4t2.

The nearby fiber is thus homotopic to an
S1 bundle over V (x − t, y2z − 4t2) ≃ S1.

We see that this bundle has trivial
monodromy, so it is actually a torus and
hence the relative homology gives
Z-summands in degrees 1 and 2.
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Computing Homology

Therefore we arrive at the homology of the
original Milnor fiber:

H̃i (Ff ) ∼=


0 i = 0

Z i = 1

Z⊕3 i = 2

0 i > 3
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Questions for the Future

Given f , how can we find interesting deformations satisfying
the criterion?

Is there a way to see changes in the (transversal?) Milnor fiber
from the scheme structure of Cf ? For example, is there a way
to produce a Whitney stratification of f −1(0) from this info?

Less plausibly: Is there a way to read the homology of the
Milnor fiber directly from scheme-theoretic invariants of Cf ?

Does this perspective generalize to other settings? (CIS,
real-analytic singularities, holomorphic functions on a singular
space, etc.)
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Thanks for listening!
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