イロト イボト イヨト イヨト

æ

Milnor Fiber Consistency for Deformations of Arbitrarily-Singular Hypersurfaces

Alex Hof

July 20, 2022

Alex Hof

イロト イポト イヨト イヨト

Review: The Milnor Fibration

Given a holomorphic function germ f : (Cⁿ⁺¹, 0) → (C, 0), we take its restriction to B_ε ∩ f⁻¹(D_δ) for 1 ≫ ε ≫ δ > 0; throwing away the potentially singular fiber over the origin, we get a smooth locally trivial Milnor fibration over D^{*}_δ. Denote its fiber by F_f.

Review: The Milnor Fibration

- Given a holomorphic function germ f : (Cⁿ⁺¹, 0) → (C, 0), we take its restriction to B_ε ∩ f⁻¹(D_δ) for 1 ≫ ε ≫ δ > 0; throwing away the potentially singular fiber over the origin, we get a smooth locally trivial Milnor fibration over D^{*}_δ. Denote its fiber by F_f.
- The homological structure of F_f is related somehow to the singular structure of $(f^{-1}(0), 0)$.

イロト イボト イヨト イヨト

3

Review: The Milnor Fibration

- Given a holomorphic function germ f : (Cⁿ⁺¹, 0) → (C, 0), we take its restriction to B_ε ∩ f⁻¹(D_δ) for 1 ≫ ε ≫ δ > 0; throwing away the potentially singular fiber over the origin, we get a smooth locally trivial Milnor fibration over D^{*}_δ. Denote its fiber by F_f.
- The homological structure of F_f is related somehow to the singular structure of $(f^{-1}(0), 0)$.
- E.g., **Milnor-Kato-Matsumoto:** $\tilde{H}_i(F_f) = 0$ for $i \notin [n \dim_{\mathbb{C}} \operatorname{Sing}_0(f^{-1}(0)), n]$

Main Theorem

Conclusion 00

Study Through Deformations

Question

When will a small perturbation of f preserve F_f ?

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 − の < ⊙

イロン イロン イヨン イヨン

= nav

Study Through Deformations

Question

When will a small perturbation of f preserve F_f ?

• When f has an **isolated singularity** at 0 — this is what lets us compute $H_*(F_f)$ by perturbing to a Morse function.

イロン イロン イヨン イヨン

= nav

Study Through Deformations

Question

Alex Hof

When will a small perturbation of f preserve F_f ?

- When f has an **isolated singularity** at 0 this is what lets us compute $H_*(F_f)$ by perturbing to a Morse function.
- (D. Massey) When the perturbation **preserves the Lê numbers** at 0 — this is too rigid for the kind of splitting we have in the isolated case.

イロト 不同 トイヨト イヨト

= nar

Study Through Deformations

Question

Alex Hof

When will a small perturbation of f preserve F_f ?

- When f has an **isolated singularity** at 0 this is what lets us compute $H_*(F_f)$ by perturbing to a Morse function.
- (D. Massey) When the perturbation **preserves the Lê numbers** at 0 — this is too rigid for the kind of splitting we have in the isolated case.
- (J. F. de Bobadilla, R. Pellikaan, ...) When the perturbation is through an ideal with respect to which *f* has **finite extended codimension** this can split off isolated singularities, but requires the higher-dimensional components to be fixed.

An Algebro-Geometric Answer

Consider

• $F: (\mathbb{C}^{n+1} \times \mathbb{C}^{u}, 0) \to (\mathbb{C}, 0)$ a holomorphic deformation of f,

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─ のへで

イロン イロン イヨン イヨン

э.

An Algebro-Geometric Answer

Consider

- $F: (\mathbb{C}^{n+1} imes \mathbb{C}^{u}, 0) o (\mathbb{C}, 0)$ a holomorphic deformation of f,
- $\pi:(\mathbb{C}^{n+1} imes\mathbb{C}^u,0) o(\mathbb{C}^u,0)$ the projection to the parameter space,

An Algebro-Geometric Answer

Consider

Alex Hof

- $F: (\mathbb{C}^{n+1} \times \mathbb{C}^{u}, 0) \to (\mathbb{C}, 0)$ a holomorphic deformation of f,
- $\pi:(\mathbb{C}^{n+1} imes\mathbb{C}^u,0) o(\mathbb{C}^u,0)$ the projection to the parameter space,
- $C_{F \times \pi} = V(\frac{\partial F}{\partial x_0}, \dots, \frac{\partial F}{\partial x_n})$ the critical locus, and

An Algebro-Geometric Answer

Consider

- $F: (\mathbb{C}^{n+1} \times \mathbb{C}^{u}, 0) \to (\mathbb{C}, 0)$ a holomorphic deformation of f,
- $\pi: (\mathbb{C}^{n+1} \times \mathbb{C}^{u}, 0) \to (\mathbb{C}^{u}, 0)$ the projection to the parameter space,
- $C_{F \times \pi} = V(\frac{\partial F}{\partial x_0}, \dots, \frac{\partial F}{\partial x_n})$ the critical locus, and
- $\Delta = (F \times \pi)(C_{F \times \pi})$ the discriminant.

An Algebro-Geometric Answer

Consider

- $F: (\mathbb{C}^{n+1} \times \mathbb{C}^{u}, 0) \to (\mathbb{C}, 0)$ a holomorphic deformation of f,
- $\pi: (\mathbb{C}^{n+1} \times \mathbb{C}^{u}, 0) \to (\mathbb{C}^{u}, 0)$ the projection to the parameter space,
- $C_{F \times \pi} = V(\frac{\partial F}{\partial x_0}, \dots, \frac{\partial F}{\partial x_n})$ the critical locus, and • $\Delta = (F \times \pi)(C_{F \times \pi})$ the discriminant.

Theorem

Suppose $C_{F \times \pi}$ is flat over \mathbb{C}^u at the origin. Then

$$F imes \pi : (B_{arepsilon} imes B_{\gamma}) \cap F^{-1}(D_{\delta}) o D_{\delta} imes B_{\gamma}$$

defines a smooth locally trivial fibration over the complement of $\overline{\Delta}$ for $1 \gg \varepsilon \gg \delta, \gamma > 0$.

Alex Hof

Setup	

Nonreduced Structure

 To understand the flatness requirement, we need to be a bit more careful about the structure of C_{F×π}.

イロト イポト イヨト イヨト

э

Nonreduced Structure

- To understand the flatness requirement, we need to be a bit more careful about the structure of C_{F×π}.
- In the isolated case, C_f is set-theoretically always just a point.

Main Theorem

イロト 不同 トイヨト イヨト

I nar

Nonreduced Structure

- To understand the flatness requirement, we need to be a bit more careful about the structure of $C_{F \times \pi}$.
- In the isolated case, C_f is set-theoretically always just a point.
- However, if we account for the nonreduced behavior that is, consider it as a "point with infinitesimal fuzz" we see that it is just the spectrum of the **Milnor algebra** $\mathcal{O}_{\mathbb{C}^{n+1},0}/(\frac{\partial f}{\partial x_0},\ldots,\frac{\partial f}{\partial x_n})$ and hence determines the homology of F_f completely.

Nonreduced Structure

- To understand the flatness requirement, we need to be a bit more careful about the structure of C_{F×π}.
- In the isolated case, C_f is set-theoretically always just a point.
- However, if we account for the nonreduced behavior that is, consider it as a "point with infinitesimal fuzz" — we see that it is just the spectrum of the **Milnor algebra** $\mathcal{O}_{\mathbb{C}^{n+1},0}/(\frac{\partial f}{\partial x_0},\ldots,\frac{\partial f}{\partial x_n})$ and hence determines the homology of F_f completely.
- By analogy, we'll consider

$$C_{F imes \pi} = V(\frac{\partial F}{\partial x_0}, \dots, \frac{\partial F}{\partial x_n}) = \operatorname{Specan} \mathcal{O}_{\mathbb{C}^{n+1} \times \mathbb{C}^u, 0} / (\frac{\partial F}{\partial x_0}, \dots, \frac{\partial F}{\partial x_n})$$

as an *analytic scheme* (C-analytic space).

Alex Hof

Flatness: The Scheme-Theoretic Notion of Consistency

• A map $R \to S$ of rings is **flat** if $- \otimes_R S$ is an exact functor.

< □ > < 同 > < 回 > < Ξ > < Ξ

Flatness: The Scheme-Theoretic Notion of Consistency

- A map $R \to S$ of rings is **flat** if $\otimes_R S$ is an exact functor.
- A map φ : X → Y of locally ringed spaces is flat at x ∈ X if the corresponding map of local rings O_{Y,φ(x)} → O_{X,x} is flat.

< □ > < 同 > < 回 > < Ξ > < Ξ

Flatness: The Scheme-Theoretic Notion of Consistency

- A map $R \to S$ of rings is **flat** if $\otimes_R S$ is an exact functor.
- A map φ : X → Y of locally ringed spaces is flat at x ∈ X if the corresponding map of local rings O_{Y,φ(x)} → O_{X,x} is flat.
- So, for us, the flatness requirement is to say that the natural map

$$\mathbb{C}\{t_1,\ldots,t_u\} \to \frac{\mathbb{C}\{x_0,\ldots,x_n,t_1,\ldots,t_u\}}{\left(\frac{\partial F}{\partial x_0},\ldots,\frac{\partial F}{\partial x_n}\right)}$$

of convergent power series rings is flat.

Flatness: The Scheme-Theoretic Notion of Consistency

• Flatness is ubiquitous in algebraic geometry as the correct notion of what it means to have a "family" or "deformation" of schemes, sheaves, etc.

イロト イポト イヨト イヨト

Flatness: The Scheme-Theoretic Notion of Consistency

- Flatness is ubiquitous in algebraic geometry as the correct notion of what it means to have a "family" or "deformation" of schemes, sheaves, etc.
- (H. Hironaka⁽⁷⁾) Flatness at a point is equivalent to the local triviality of the normal cone to the fiber over the tangent cone of the base.

イロト イボト イヨト イヨト

Flatness: The Scheme-Theoretic Notion of Consistency

- Flatness is ubiquitous in algebraic geometry as the correct notion of what it means to have a "family" or "deformation" of schemes, sheaves, etc.
- (H. Hironaka⁽⁷⁾) Flatness at a point is equivalent to the local triviality of the normal cone to the fiber over the tangent cone of the base.
- If Y is one-dimensional and smooth, then flatness is equivalent to the requirement that no component, irreducible or embedded, be mapped to a single point.

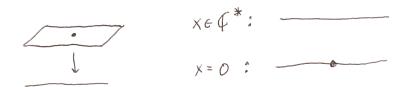
Main Theorem

Conclusion

A Non-Flat Map

Non-Example

The map $\mathbb{C}\{x\} \to \mathbb{C}\{x, y, z\}/(xz, yz, z^2)$ is not flat.



◆□ ▶ ◆□ ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ のへで

Alex Hof

Setup and Introduction

Structure of Analytic Schemes 00000

Main Theorem

・ロン ・四 と ・ ヨ と ・ ヨ と

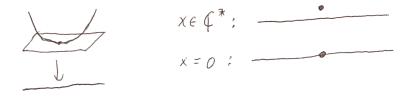
ъ.

Conclusion

A Flat Map

Example

The map $\mathbb{C}{x} \rightarrow \mathbb{C}{x, y, z}/(yz, (z - x^2)z)$ is flat.



Alex Hof

Main Theorem

イロト イボト イヨト イヨト

3

Aside on the Isolated Case

- If f defines an isolated singularity, then $C_{F \times \pi}$ will always be flat over \mathbb{C}^{u} .
- This explains why the algebraic Milnor number is the same as the Morse-theoretic one — the flatness forces the consistency of number of points in the fiber when counted with multiplicity.

イロト イポト イヨト イヨト

3

Interpretation of the Theorem

Theorem (again)

Suppose $C_{F \times \pi}$ is flat over \mathbb{C}^u at the origin. Then

$$F imes \pi : (B_{\varepsilon} imes B_{\gamma}) \cap F^{-1}(D_{\delta}) o D_{\delta} imes B_{\gamma}$$

defines a smooth locally trivial fibration over the complement of $\overline{\Delta}$ for $1 \gg \varepsilon \gg \delta, \gamma > 0$.

That is: If the critical loci of a family of holomorphic function germs vary consistently (in the sense of flatness), then their local smooth fibers vary consistently as well (in the sense that they fit together into a smooth locally trivial fibration).

Setup	

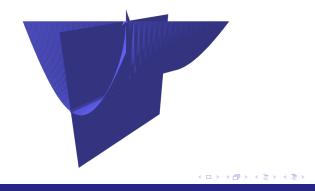
Main Theorem ○●○ Conclusion

э

Example Use

Example

Let $f = x^3 + xy^2z$. We compute the reduced homology of the Milnor fiber by the deformation $F = (x^2 + y^2z - 5t^2)(x - t)$.



Alex Hof

Setup	

Main Theorem ○●○

イロト イポト イヨト イヨト

э

Example Use

Example

Let $f = x^3 + xy^2z$. We compute the reduced homology of the Milnor fiber by the deformation $F = (x^2 + y^2z - 5t^2)(x - t)$.

The critical locus looks like this:

Alex Hof

Setup	

Main Theorem

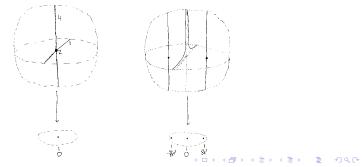
Conclusion

Example Use

Example

Let $f = x^3 + xy^2z$. We compute the reduced homology of the Milnor fiber by the deformation $F = (x^2 + y^2z - 5t^2)(x - t)$.

The critical locus looks like this and deforms to this:



Alex Hof

Main Theorem

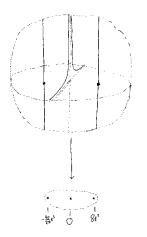
< 17 ▶

< ∃ >

э

Conclusion

Computing Homology



• (D. Siersma) Express the Milnor fiber homology as the (shifted) relative homology of $(f_t^{-1}(D_\delta), f_t^{-1}(v))$.

Alex Hof

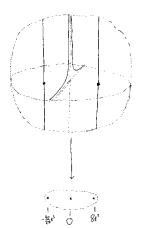
Structure of Analytic Schemes

Main Theorem

3 ×

Conclusion

Computing Homology



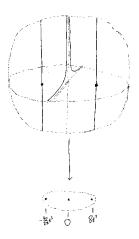
- (D. Siersma) Express the Milnor fiber homology as the (shifted) relative homology of $(f_t^{-1}(D_\delta), f_t^{-1}(v))$.
- (D. Siersma) This can be computed locally at each critical value.

Structure of Analytic Schemes

Main Theorem

Conclusion 00

Computing Homology



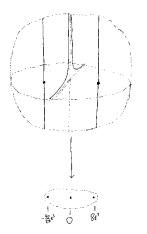
- (D. Siersma) Express the Milnor fiber homology as the (shifted) relative homology of $(f_t^{-1}(D_\delta), f_t^{-1}(v))$.
- (D. Siersma) This can be computed locally at each critical value.
- In this case the bits above $-\frac{40}{27}t^3$ and $8t^3$ are D_{∞} singularities, so each contributes a \mathbb{Z} -summand in degree 2.

A (1) > A (2) > A

Main Theorem

Conclusion

Computing Homology



The part over the origin is locally of type A_∞, but it now has some topology, being given by the equations x = t, y²z = 4t².

< 🗇 🕨

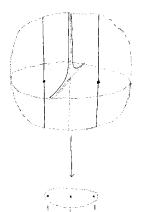
3

Alex Hof

Main Theorem

Conclusion

Computing Homology



- The part over the origin is locally of type A_∞, but it now has some topology, being given by the equations x = t, y²z = 4t².
- The nearby fiber is thus homotopic to an S^1 bundle over $V(x t, y^2z 4t^2) \simeq S^1$.

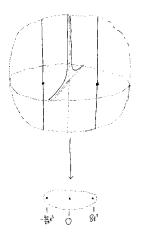
< ∃ >

Milnor Fiber Consistency for Deformations of Arbitrarily-Singular Hypersurfaces

Alex Hof

Main Theorem

Computing Homology



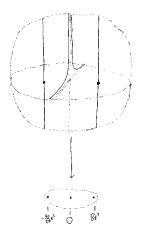
- The part over the origin is locally of type A_∞, but it now has some topology, being given by the equations x = t, y²z = 4t².
- The nearby fiber is thus homotopic to an S^1 bundle over $V(x t, y^2z 4t^2) \simeq S^1$.
- We see that this bundle has trivial monodromy, so it is actually a torus and hence the *relative* homology gives
 Z-summands in degrees 1 and 2.

< ∃ >

Main Theorem

Conclusion

Computing Homology



Therefore we arrive at the homology of the original Milnor fiber:

$$ilde{\mathcal{H}}_i(F_f)\cong egin{cases} 0&i=0\ \mathbb{Z}&i=1\ \mathbb{Z}^{\oplus 3}&i=2\ 0&i>3 \end{cases}$$

< E > < E >

æ

Alex Hof

Main Theorem

Questions for the Future

- Given *f*, how can we find interesting deformations satisfying the criterion?
- Is there a way to see changes in the (transversal?) Milnor fiber from the scheme structure of C_f ? For example, is there a way to produce a Whitney stratification of $f^{-1}(0)$ from this info?
- Less plausibly: Is there a way to read the homology of the Milnor fiber directly from scheme-theoretic invariants of C_f?
- Does this perspective generalize to other settings? (CIS, real-analytic singularities, holomorphic functions on a singular space, etc.)

Thanks for listening!

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで

Alex Hof