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Setup and Introduction
©00

Review: The Milnor Fibration

@ Given a holomorphic function germ f : (C"™1,0) — (C,0), we
take its restriction to B. N f~1(Ds) for 1 > ¢ > § > 0;
throwing away the potentially singular fiber over the origin, we
get a smooth locally trivial Milnor fibration over D;. Denote

its fiber by Fr.
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@ Given a holomorphic function germ f : (C"™1,0) — (C,0), we
take its restriction to B. N f~1(Ds) for 1 > ¢ > § > 0;
throwing away the potentially singular fiber over the origin, we
get a smooth locally trivial Milnor fibration over D;. Denote
its fiber by Fr.

@ The homological structure of Fy is related somehow to the
singular structure of (f~1(0),0).
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Setup and Introduction
©00

Review: The Milnor Fibration

@ Given a holomorphic function germ f : (C"™1,0) — (C,0), we
take its restriction to B. N f~1(Ds) for 1 > ¢ > § > 0;
throwing away the potentially singular fiber over the origin, we
get a smooth locally trivial Milnor fibration over D;. Denote
its fiber by Fr.

@ The homological structure of Fy is related somehow to the
singular structure of (f~1(0),0).

e E.g., Milnor-Kato-Matsumoto: H;(Ff) = 0 for
i & [n— dime Singo(f1(0)), n]
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Study Through Deformations

When will a small perturbation of f preserve F¢?
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Study Through Deformations

When will a small perturbation of f preserve F¢?

@ When f has an isolated singularity at 0 — this is what lets
us compute H,(F¢) by perturbing to a Morse function.
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Setup and Introduction
0e0

Study Through Deformations

When will a small perturbation of f preserve F¢?

@ When f has an isolated singularity at 0 — this is what lets
us compute H,(F¢) by perturbing to a Morse function.
@ (D. Massey) When the perturbation preserves the Lé

numbers at 0 — this is too rigid for the kind of splitting we
have in the isolated case.
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Setup and Introduction
0e0

Study Through Deformations

When will a small perturbation of f preserve F¢?

@ When f has an isolated singularity at 0 — this is what lets
us compute H,(F¢) by perturbing to a Morse function.

@ (D. Massey) When the perturbation preserves the Lé
numbers at 0 — this is too rigid for the kind of splitting we
have in the isolated case.

o (J. F. de Bobadilla, R. Pellikaan, ...) When the perturbation is
through an ideal with respect to which f has finite extended
codimension — this can split off isolated singularities, but
requires the higher-dimensional components to be fixed.
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An Algebro-Geometric Answer

Consider
o F:(C*! x C¥ 0)— (C,0) a holomorphic deformation of f,
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An Algebro-Geometric Answer

Consider
o F:(C*! x C¥ 0)— (C,0) a holomorphic deformation of f,
o m: (C" x C¥ 0)— (CY 0) the projection to the parameter
space,
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o F:(C*! x C¥ 0)— (C,0) a holomorphic deformation of f,
71 (C™1 x CY,0) — (C¥,0) the projection to the parameter
space,
o Cryr= V(ax ,...,ax ) the critical locus, and
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An Algebro-Geometric Answer

Consider
o F:(C*! x C¥ 0)— (C,0) a holomorphic deformation of f,
71 (C™1 x CY,0) — (C¥,0) the projection to the parameter
space,
o Cryr= V(ax ,...,ax ) the critical locus, and
@ A = (F x m)(Crxx) the discriminant.
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Setup and Introduction
ooe

An Algebro-Geometric Answer

Consider
o F:(C*! x C¥ 0)— (C,0) a holomorphic deformation of f,
71 (C™1 x CY,0) — (C¥,0) the projection to the parameter
space,
o Cryr= V(ax0 ..,ax ) the critical locus, and
@ A = (F x m)(Crxx) the discriminant.

Suppose Cgy is flat over CY at the origin. Then
Fxm:(B: x B,)NFYDs) — Ds x B,

defines a smooth locally trivial fibration over the complement of A
for1>¢e>6,v>0.
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Structure of Analytic Schemes
©0000

Nonreduced Structure

@ To understand the flatness requirement, we need to be a bit
more careful about the structure of Cry.
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Nonreduced Structure

@ To understand the flatness requirement, we need to be a bit
more careful about the structure of Cry.

@ In the isolated case, Cr is set-theoretically always just a point.
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Structure of Analytic Schemes
©0000

Nonreduced Structure

@ To understand the flatness requirement, we need to be a bit
more careful about the structure of Cry.

@ In the isolated case, Cr is set-theoretically always just a point.

@ However, if we account for the nonreduced behavior — that

is, consider it as a “point with infinitesimal fuzz" — we see
that it is just the spectrum of the Milnor algebra
Ocn+1’0/(%, e g—;) and hence determines the homology of

F¢ completely.
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Structure of Analytic Schemes
©0000

Nonreduced Structure

@ To understand the flatness requirement, we need to be a bit
more careful about the structure of Cry.

@ In the isolated case, Cr is set-theoretically always just a point.

@ However, if we account for the nonreduced behavior — that

is, consider it as a “point with infinitesimal fuzz" — we see
that it is just the spectrum of the Milnor algebra
Ocn+1’0/(%, e g—;) and hence determines the homology of

F¢ completely.

e By analogy, we'll consider

Crxr = V(55 52) = Specan Ocnarycuo/ (5 - 52)

as an analytic scheme (C-analytic space).
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Structure of Analytic Schemes
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Flatness: The Scheme-Theoretic Notion of Consistency

@ A map R — S of rings is flat if — ®g S is an exact functor.
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Structure of Analytic Schemes
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Flatness: The Scheme-Theoretic Notion of Consistency

@ A map R — S of rings is flat if — ®g S is an exact functor.

@ Amap ¢: X — Y of locally ringed spaces is flat at x € X if
the corresponding map of local rings Oy 4() = Ox x is flat.
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Structure of Analytic Schemes
0®000

Flatness: The Scheme-Theoretic Notion of Consistency

@ A map R — S of rings is flat if — ®g S is an exact functor.

@ Amap ¢: X — Y of locally ringed spaces is flat at x € X if
the corresponding map of local rings Oy 4() = Ox x is flat.

@ So, for us, the flatness requirement is to say that the natural

map
Cixg,..., xn. t1,...,t
Clty,... ty} — {xo, AL A v}
(B—XO,...,BXH

of convergent power series rings is flat.
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Structure of Analytic Schemes
0®000

Flatness: The Scheme-Theoretic Notion of Consistency

o Flatness is ubiquitous in algebraic geometry as the correct
notion of what it means to have a “family” or “deformation”
of schemes, sheaves, etc.
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Structure of Analytic Schemes
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Flatness: The Scheme-Theoretic Notion of Consistency

o Flatness is ubiquitous in algebraic geometry as the correct
notion of what it means to have a “family” or "deformation”
of schemes, sheaves, etc.

e (H. Hironaka(s)) Flatness at a point is equivalent to the local
triviality of the normal cone to the fiber over the tangent cone
of the base.
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Structure of Analytic Schemes
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Flatness: The Scheme-Theoretic Notion of Consistency

o Flatness is ubiquitous in algebraic geometry as the correct
notion of what it means to have a “family” or “deformation”
of schemes, sheaves, etc.

e (H. Hironaka(s)) Flatness at a point is equivalent to the local
triviality of the normal cone to the fiber over the tangent cone
of the base.

@ If Y is one-dimensional and smooth, then flatness is
equivalent to the requirement that no component, irreducible
or embedded, be mapped to a single point.
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Structure of Analytic Schemes

[e]e] le]e}

A Non-Flat Map

Non-Example

The map C{x} — C{x,y,z}/(xz,yz,z?) is not flat.

- %
)«6-¢ ] -

i eyt
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Structure of Analytic Schemes
000®0

A Flat Map

Example
The map C{x} — C{x,y,z}/(yz,(z — x?)z) is flat.

xe (Y ——
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Structure of Analytic Schemes
0000e

Aside on the Isolated Case

o If f defines an isolated singularity, then Cgy, will always be
flat over C".

@ This explains why the algebraic Milnor number is the same as
the Morse-theoretic one — the flatness forces the consistency
of number of points in the fiber when counted with
multiplicity.
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Main Theorem
@00

Interpretation of the Theorem

Theorem (again)
Suppose Cgy . is flat over CY at the origin. Then

Fxm:(B:x B,)NFYDs) — Ds x B,

defines a smooth locally trivial fibration over the complement of A
for1>¢e>6,7v>0.

That is: If the critical loci of a family of holomorphic function
germs vary consistently (in the sense of flatness), then their local
smooth fibers vary consistently as well (in the sense that they fit
together into a smooth locally trivial fibration).
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Main Theorem
(o] Jo}

Example Use

Let f = x3 + xy?z. We compute the reduced homology of the
Milnor fiber by the deformation F = (x?> + y?z — 5t2)(x — t).
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Main Theorem
(o] Jo}

Example Use

Example

Let f = x3 + xy?z. We compute the reduced homology of the
Milnor fiber by the deformation F = (x?> + y?z — 5t2)(x — t).

The critical locus looks like this:
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Main Theorem
(o] Jo}

Example Use

Example

Let f = x3 + xy?z. We compute the reduced homology of the
Milnor fiber by the deformation F = (x?> + y?z — 5t2)(x — t).

The critical locus looks like this and deforms to this:

R [
1 | 1
g
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Main Theorem
[e]e] ]

Computing Homology

g o (D. Siersma) Express the Milnor fiber
: homology as the (shifted) relative
Lo homology of (£~1(Ds), f; (v)).
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Main Theorem
[e]e] ]

Computing Homology

‘: o (D. Siersma) Express the Milnor fiber

homology as the (shifted) relative

R homology of (£~ (Ds), f; *(v)).

e (D. Siersma) This can be computed
locally at each critical value.
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Main Theorem
[e]e] ]

Computing Homology

‘: o (D. Siersma) Express the Milnor fiber

homology as the (shifted) relative

R homology of (£~ (Ds), f; *(v)).

e (D. Siersma) This can be computed
locally at each critical value.

@ In this case the bits above —%F’ and 8t3
are D, singularities, so each contributes
a Z-summand in degree 2.
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Main Theorem

ooe

Computing Homology

@ The part over the origin is locally of type
| Aso, but it now has some topology, being
+ given by the equations x = t, y2z = 4t°.
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Main Theorem
[e]e] ]

Computing Homology

@ The part over the origin is locally of type
| Aso, but it now has some topology, being
¥ given by the equations x = t, y2z = 4t°.
/ @ The nearby fiber is thus homotopic to an
S! bundle over V(x — t, y?z — 4t?) ~ S1.
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Main Theorem
[e]e] ]

Computing Homology

@ The part over the origin is locally of type
| Aso, but it now has some topology, being
R given by the equations x = t, y2z = 4t°.
, @ The nearby fiber is thus homotopic to an
’ S! bundle over V(x — t, y?z — 4t?) ~ S1.

@ We see that this bundle has trivial
monodromy, so it is actually a torus and
hence the relative homology gives
Z-summands in degrees 1 and 2.
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Main Theorem

ooe

Computing Homology

' Therefore we arrive at the homology of the
; original Milnor fiber:
T
’ 0 i=0
- Z i=1
AP = ges =g
0 i>3
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Conclusion
®0

Questions for the Future

@ Given f, how can we find interesting deformations satisfying
the criterion?
@ Is there a way to see changes in the (transversal?) Milnor fiber

from the scheme structure of C¢? For example, is there a way
to produce a Whitney stratification of £f~1(0) from this info?

@ Less plausibly: Is there a way to read the homology of the
Milnor fiber directly from scheme-theoretic invariants of C¢?

@ Does this perspective generalize to other settings? (CIS,
real-analytic singularities, holomorphic functions on a singular
space, etc.)
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Conclusion
oce

Thanks for listening!
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