Milnor Fiber Consistency via Flatness

Alex Hof

Tenth Congress of Romanian Mathematicians July 1, 2023

▲□▶ ▲□▶ ▲目▶ ▲目▶ = 目 - のへ⊙

Milnor Fiber Consistency via Flatness

5 990

メロト メロト メヨト メヨト

Introduction

Alex Hof Milnor Fiber Consistency via Flatness

The Milnor Fibration

Definition (Milnor '68)

Let $f:(\mathbb{C}^{n+1},0)\to(\mathbb{C},0)$ be a holomorphic function germ. Its restriction

$$f: B_{\varepsilon} \cap f^{-1}(D^*_{\delta}) \to D^*_{\delta}$$

for $1 \gg \varepsilon \gg \delta > 0$ is a smooth locally trivial fibration over $D_{\delta}^* := D_{\delta} \setminus 0$, called the **Milnor fibration** of f at the origin. Denote its fiber by \mathbb{F}_{f} .

Milnor Fiber Consistency via Flatness

Milnor's Bouquet Theorem

Theorem (Milnor '68)

Suppose dim₀ Crit(f) = 0. Then $\mathbb{F}_f \simeq \bigvee_{\mu_f} S^n$, where $\mu_f := \dim_{\mathbb{C}} \mathcal{O}_{\mathbb{C}^{n+1},0}/J_f$ is the Milnor number and

$$J_f := \left(\frac{\partial f}{\partial x_0}, \cdots, \frac{\partial f}{\partial x_n}\right)$$

is the Jacobian ideal of f.

Milnor's Bouquet Theorem

Theorem (Milnor '68)

Suppose dim₀ Crit(f) = 0. Then $\mathbb{F}_f \simeq \bigvee_{\mu_f} S^n$, where $\mu_f := \dim_{\mathbb{C}} \mathcal{O}_{\mathbb{C}^{n+1},0}/J_f$ is the Milnor number and

$$J_f := \left(\frac{\partial f}{\partial x_0}, \cdots, \frac{\partial f}{\partial x_n}\right)$$

is the Jacobian ideal of f.

Thus, if we identify $\operatorname{Crit}(f)$ with $\operatorname{Spec} \mathcal{O}_{\mathbb{C}^{n+1},0}/J_f$, we can see that the Milnor fiber is determined by $\operatorname{Crit}(f)$.

Milnor's Bouquet Theorem

Theorem (Milnor '68)

Suppose dim₀ Crit(f) = 0. Then $\mathbb{F}_f \simeq \bigvee_{\mu_f} S^n$, where $\mu_f := \dim_{\mathbb{C}} \mathcal{O}_{\mathbb{C}^{n+1},0}/J_f$ is the Milnor number and

$$J_f := \left(\frac{\partial f}{\partial x_0}, \cdots, \frac{\partial f}{\partial x_n}\right)$$

is the Jacobian ideal of f.

Thus, if we identify $\operatorname{Crit}(f)$ with $\operatorname{Spec} \mathcal{O}_{\mathbb{C}^{n+1},0}/J_f$, we can see that the Milnor fiber is determined by $\operatorname{Crit}(f)$. Is this true in the non-isolated case as well?

∃ 990

イロン イ団 と イヨン イヨン

Algebraic Background

Alex Hof Milnor Fiber Consistency via Flatness

Normal Cone: Definition

It will turn out that we need to retain some information about the embedding of Crit(f) as well, using the following construction:

Definition

Let $X \hookrightarrow Y$ be a closed inclusion of schemes (or complex-analytic spaces) with ideal sheaf \mathcal{I} . Then the **normal cone** $C_X Y$ of X in Y is the scheme (resp. \mathbb{C} -analytic space) given by the relative spectrum (resp. relative analytic spectrum) of the **associated** graded sheaf of algebras

$$\operatorname{\mathsf{gr}}_{\mathcal{I}} \mathcal{O}_{\boldsymbol{Y}} := \bigoplus_{i=0}^{\infty} \mathcal{I}^i / \mathcal{I}^{i+1}.$$

Normal Cone: Intuition

- If X is a point, then $C_X Y$ is the **tangent cone** to Y at X.
- If X and Y are smooth, then $C_X Y$ is the **normal bundle** to X in Y.
- X → Y is a regular embedding if and only if C_XY is a vector bundle over X.

Flatness

We will prove results about the consistency of smooth fibers in a family (in some sense) following from the consistency of the critical loci. For the latter notion, we need:

Definition

Let $\phi : X \to Y$ be a morphism of schemes (or \mathbb{C} -analytic spaces). We say that ϕ is flat if, for each point $p \in X$, $-\otimes_{\mathcal{O}_{Y,\phi(p)}} \mathcal{O}_{X,p}$ is an exact functor.

Flatness

We will prove results about the consistency of smooth fibers in a family (in some sense) following from the consistency of the critical loci. For the latter notion, we need:

Definition

Let $\phi : X \to Y$ be a morphism of schemes (or \mathbb{C} -analytic spaces). We say that ϕ is flat if, for each point $p \in X$, $-\otimes_{\mathcal{O}_{Y,\phi(p)}} \mathcal{O}_{X,p}$ is an exact functor.

Geometrically, flatness is given in the Noetherian setting by the triviality of $C_{(\phi^{-1}(\phi(p)),p)}(X,p)$ over $C_{\phi(p)}(Y,\phi(p))$ at each point $p \in X$.

∃ < n < 0</p>

メロト メロト メヨト メヨト

Results

Alex Hof Milnor Fiber Consistency via Flatness

Stratification Theorem

Theorem (H.)

Let X be a \mathbb{C} -analytic manifold, $\pi : X \times \mathbb{C}^u \to \mathbb{C}^u$ the projection, and $F : X \times \mathbb{C}^u \to \mathbb{C}$ a holomorphic function nowhere constant on fibers of π . Let $Crit(F \times \pi)$ be the vanishing locus of the ideal sheaf of maximal minors of the Jacobian matrix of $F \times \pi$. Then there exists a \mathbb{C} -analytic Whitney stratification of $X \times \mathbb{C}^u$ so that:

- $(X \times \mathbb{C}^u) \setminus \operatorname{Crit}(F \times \pi)$ is the ambient stratum.
- The non-flat locus of C_{Crit(F×π)}(X × ℂ^u) over ℂ^u is a union of strata.
- The Thom (a_{F×π}) condition with respect to the ambient stratum is satisfied on any stratum not contained in this non-flat locus.

Setup: Germs of Families

We consider the following circumstances:

- $F: (\mathbb{C}^{n+1} \times \mathbb{C}^{u}, 0 \times 0) \to (\mathbb{C}, 0)$ holomorphic
- $\pi: (\mathbb{C}^{n+1} \times \mathbb{C}^{u}, 0 \times 0) \to (\mathbb{C}^{u}, 0)$ the projection
- $f := F|_{\pi^{-1}(0)}$ the function being deformed

Setup: Germs of Families

We consider the following circumstances:

- $F: (\mathbb{C}^{n+1} \times \mathbb{C}^{u}, 0 \times 0) \to (\mathbb{C}, 0)$ holomorphic
- $\pi: (\mathbb{C}^{n+1} \times \mathbb{C}^{u}, 0 \times 0) \to (\mathbb{C}^{u}, 0)$ the projection
- $f := F|_{\pi^{-1}(0)}$ the function being deformed
- $J_{F \times \pi} := \left(\frac{\partial F}{\partial x_0}, \dots, \frac{\partial F}{\partial x_n}\right)$ the ideal of maximal minors of the Jacobian matrix of $F \times \pi$
- Crit(F × π) := Spec O_{Cⁿ⁺¹×C^u,0×0}/J_{F×π} the family of critical loci

Milnor Fiber Consistency via Flatness

Goal: Smooth Fiber Consistency

We wish to find circumstances in which the following is true: For $1 \gg \varepsilon \gg \delta, \gamma > 0$, if we take representatives on $B_{\varepsilon} \times B_{\gamma}$ in $\mathbb{C}^{n+1} \times \mathbb{C}^{u}$ and let $\Delta_{\delta,\gamma}^{\varepsilon} := \overline{(F \times \pi)(\operatorname{Crit}(F \times \pi))} \cap (D_{\delta} \times B_{\gamma})$ be the discriminant, the restriction

$$F imes \pi : (B_{arepsilon} imes B_{\gamma}) \cap (F imes \pi)^{-1} ((D_{\delta} imes B_{\gamma}) ackslash \Delta_{\delta, \gamma}^{arepsilon}) o (D_{\delta} imes B_{\gamma}) ackslash \Delta_{\delta, \gamma}^{arepsilon}$$

is a diffeomorphically locally trivial fibration.

Theorem (H.)

Suppose that either of the following holds:

- For every p ∈ Crit(f) in a sufficiently small punctured neighborhood of the origin, there exists a germ V of a holomorphic vector field at p such that Vf = 0 and V(p) is not tangent to the sphere of radius |p| centered at the origin. Moreover, Crit(F × π) is flat over C^u everywhere on π⁻¹(0), except possibly at the origin.
- C_{Crit(F×π)}(Cⁿ⁺¹ × C^u) is flat over C^u everywhere on π⁻¹(0), except possibly at the origin.

Then we have smooth fiber consistency for $F \times \pi$ in the sense previously discussed.

Consequence: Homogeneous Polynomials

Corollary

Let $H_{n,d} \cong \mathbb{P}^{\binom{n+d}{n}-1}$ be the space of homogeneous degree-d polynomials in n+1 variables up to scaling. Then we can partition $H_{n,d}$ into finitely many Zariski-locally-closed subsets such that the diffeomorphism types of the polynomials' Milnor fibrations are constant along each subset.

Consequence: Homogeneous Polynomials

Proof idea

- Let Σ_{n,d} ⊂ ℙⁿ × H_{n,d} be the scheme whose fiber over each hypersurface is its singular locus.
- Find $C_{\Sigma_{n,d}}(\mathbb{P}^n \times H_{n,d})$ and let $H'_{n,d} \subset H_{n,d}$ be a closed subset such that the normal cone is flat over $H_{n,d} \setminus H'_{n,d}$.
- Pull everything back over $H'_{n,d}$ and repeat.

Alex Hof

Milnor Fiber Consistency via Flatness

イロト 不得 トイヨト イヨト

3

Consequence: Critical Locus a Complete Intersection

Corollary

In the setting of the theorem, suppose we have a regular sequence g_1, \ldots, g_c generating an ideal I such that $J_f \subseteq I$ and $\dim_{\mathbb{C}} I/J_f < \infty$. Then we have smooth fiber consistency for $F \times \pi$ so long as there are deformations G_i of the g_i over \mathbb{C}^u such that $J_{F \times \pi} \subseteq (G_1, \ldots, G_c)$.

イロン イヨン イヨン イヨン

2

Thanks for listening!

Alex Hof Milnor Fiber Consistency via Flatness