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The Milnor Fibration

Definition (Milnor ’68)

Let f : (Cn+1, 0) → (C, 0) be a holomorphic function germ. Its
restriction

f : Bε ∩ f −1(D∗
δ ) → D∗

δ

for 1 ≫ ε ≫ δ > 0 is a smooth locally trivial fibration over
D∗
δ := Dδ \ 0, called the Milnor fibration of f at the origin.

Denote its fiber by Ff .
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Milnor’s Bouquet Theorem

Theorem (Milnor ’68)

Suppose dim0 Crit(f ) = 0. Then Ff ≃
∨

µf
Sn, where

µf := dimCOCn+1,0/Jf is the Milnor number and

Jf :=
(

∂f
∂x0

, · · · , ∂f
∂xn

)
is the Jacobian ideal of f .

Thus, if we identify Crit(f ) with SpecOCn+1,0/Jf , we can see that
the Milnor fiber is determined by Crit(f ).

Is this true in the
non-isolated case as well?
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Normal Cone: Definition

It will turn out that we need to retain some information about the
embedding of Crit(f ) as well, using the following construction:

Definition

Let X ↪→ Y be a closed inclusion of schemes (or complex-analytic
spaces) with ideal sheaf I. Then the normal cone CXY of X in Y
is the scheme (resp. C-analytic space) given by the relative
spectrum (resp. relative analytic spectrum) of the associated
graded sheaf of algebras

grI OY :=
∞⊕
i=0

I i/I i+1.
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Normal Cone: Intuition

If X is a point, then CXY is the tangent cone to Y at X .

If X and Y are smooth, then CXY is the normal bundle to
X in Y .

X ↪→ Y is a regular embedding if and only if CXY is a vector
bundle over X .
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Flatness

We will prove results about the consistency of smooth fibers in a
family (in some sense) following from the consistency of the critical
loci. For the latter notion, we need:

Definition

Let ϕ : X → Y be a morphism of schemes (or C-analytic spaces).
We say that ϕ is flat if, for each point p ∈ X , −⊗OY ,ϕ(p)

OX ,p is
an exact functor.

Geometrically, flatness is given in the Noetherian setting by the
triviality of C(ϕ−1(ϕ(p)),p)(X , p) over Cϕ(p)(Y , ϕ(p)) at each point
p ∈ X .
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Stratification Theorem

Theorem (H.)

Let X be a C-analytic manifold, π : X × Cu → Cu the projection,
and F : X × Cu → C a holomorphic function nowhere constant on
fibers of π. Let Crit(F × π) be the vanishing locus of the ideal
sheaf of maximal minors of the Jacobian matrix of F × π. Then
there exists a C-analytic Whitney stratification of X ×Cu so that:

(X × Cu) \ Crit(F × π) is the ambient stratum.

The non-flat locus of CCrit(F×π)(X × Cu) over Cu is a union
of strata.

The Thom (aF×π) condition with respect to the ambient
stratum is satisfied on any stratum not contained in this
non-flat locus.
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Setup: Germs of Families

We consider the following circumstances:

F : (Cn+1 × Cu, 0× 0) → (C, 0) holomorphic

π : (Cn+1 × Cu, 0× 0) → (Cu, 0) the projection

f := F |π−1(0) the function being deformed

JF×π :=
(

∂F
∂x0

, . . . , ∂F
∂xn

)
the ideal of maximal minors of the

Jacobian matrix of F × π

Crit(F × π) := SpecOCn+1×Cu ,0×0/JF×π the family of critical
loci
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Goal: Smooth Fiber Consistency

We wish to find circumstances in which the following is true:
For 1 ≫ ε ≫ δ, γ > 0, if we take representatives on Bε × Bγ in

Cn+1 × Cu and let ∆ε
δ,γ := (F × π)(Crit(F × π)) ∩ (Dδ × Bγ) be

the discriminant, the restriction

F ×π : (Bε×Bγ)∩ (F ×π)−1((Dδ×Bγ)\∆ε
δ,γ) → (Dδ×Bγ)\∆ε

δ,γ

is a diffeomorphically locally trivial fibration.
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Theorem (H.)

Suppose that either of the following holds:

For every p ∈ Crit(f ) in a sufficiently small punctured
neighborhood of the origin, there exists a germ V of a
holomorphic vector field at p such that Vf = 0 and V (p) is
not tangent to the sphere of radius |p| centered at the origin.
Moreover, Crit(F × π) is flat over Cu everywhere on π−1(0),
except possibly at the origin.

CCrit(F×π)(Cn+1 × Cu) is flat over Cu everywhere on π−1(0),
except possibly at the origin.

Then we have smooth fiber consistency for F × π in the sense
previously discussed.
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Consequence: Homogeneous Polynomials

Corollary

Let Hn,d
∼= P

(n+d
n

)
−1 be the space of homogeneous degree-d

polynomials in n+ 1 variables up to scaling. Then we can partition
Hn,d into finitely many Zariski-locally-closed subsets such that the
diffeomorphism types of the polynomials’ Milnor fibrations are
constant along each subset.
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Consequence: Homogeneous Polynomials

Proof idea

Let Σn,d ⊂ Pn × Hn,d be the scheme whose fiber over each
hypersurface is its singular locus.

Find CΣn,d
(Pn × Hn,d) and let H ′

n,d ⊂ Hn,d be a closed subset
such that the normal cone is flat over Hn,d \ H ′

n,d .

Pull everything back over H ′
n,d and repeat.

· · · Pn × H ′
n,d Pn × Hn,d

· · · Σ′
n,d Σn,d

· · · H ′
n,d Hn,d
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Consequence: Critical Locus a Complete Intersection

Corollary

In the setting of the theorem, suppose we have a regular sequence
g1, . . . , gc generating an ideal I such that Jf ⊆ I and
dimC I/Jf < ∞. Then we have smooth fiber consistency for F × π
so long as there are deformations Gi of the gi over Cu such that
JF×π ⊆ (G1, . . . ,Gc).
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Thanks for listening!
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