Ideal-Theoretic Study of the Milnor Fibration

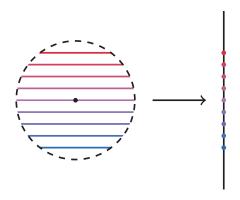
Alex Hof

HUN-REN Alfréd Rényi Institute of Mathematics

International Congress on Complex Geometry, Singularities and Dynamics: In honor of José Seade June 5, 2024

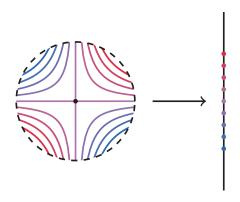
Non-Critical Points

Let $f: \mathbb{C}^{n+1} \to \mathbb{C}$ be a holomorphic function. If f is a submersion at $p \in \mathbb{C}^{n+1}$, then f looks like a coordinate projection locally at p:



Critical Points

On the other hand, if f fails to be a submersion at $p \in \mathbb{C}^{n+1}$, the local fiber through p will be singular:



The Milnor Fibration

However, the smooth local fibers of f will still be consistent:

Theorem (Milnor '68, Lê '76)

Let $f:(\mathbb{C}^{n+1},0)\to(\mathbb{C},0)$ be a holomorphic function germ. Its restriction

$$f: B_{\varepsilon} \cap f^{-1}(D_{\delta}^*) \to D_{\delta}^*$$

for $1 \gg \varepsilon \gg \delta > 0$ is a smooth locally trivial fibration over $D_{\delta}^* := D_{\delta} \setminus 0$.

This is called the **Milnor fibration** of f at the origin — its fiber is denoted by \mathbb{F}_f .

Long-Term Goals

Goal

Understand the behavior of the Milnor fibration of an arbitrary holomorphic function germ.

Long-Term Goals

Goal

Understand the behavior of the Milnor fibration of an arbitrary holomorphic function germ. Concretely, find effective means of computing the following:

- The homology or homotopy type of the Milnor fiber.
- The monodromy of the Milnor fibration.

First Relations with the Critical Locus

Theorem (Kato-Matsumoto '73)

Let $f:(\mathbb{C}^{n+1},0)\to(\mathbb{C},0)$ be a non-constant holomorphic function germ. Let s denote the complex dimension of the critical locus of f at the origin. Then \mathbb{F}_f is (n-s-1)-connected.

In particular, since \mathbb{F}_f is a Stein manifold, $\tilde{H}_i(\mathbb{F}_f) = 0$ for $i \notin [n-s, n]$.

The Jacobian Criterion

We can also endow the critical locus with a non-reduced structure:

Theorem (Jacobian Criterion)

Let $F: X \to Y$ be a finitely-presented flat map of pure relative dimension n (e.g., $F: \mathbb{C}^{n+k} \to \mathbb{C}^k$ with n-dimensional fibers).

The Jacobian Criterion

We can also endow the critical locus with a non-reduced structure:

Theorem (Jacobian Criterion)

Let $F: X \to Y$ be a finitely-presented flat map of pure relative dimension n (e.g., $F: \mathbb{C}^{n+k} \to \mathbb{C}^k$ with n-dimensional fibers).

Then, for $J_F := \operatorname{Fitt}_n(\Omega_F)$ the **Jacobian ideal** (the ideal of $k \times k$ minors of the Jacobian matrix of F),

The Jacobian Criterion

We can also endow the critical locus with a non-reduced structure:

Theorem (Jacobian Criterion)

Let $F: X \to Y$ be a finitely-presented flat map of pure relative dimension n (e.g., $F: \mathbb{C}^{n+k} \to \mathbb{C}^k$ with n-dimensional fibers). Then, for $J_F := \operatorname{Fitt}_n(\Omega_F)$ the **Jacobian ideal** (the ideal of $k \times k$ minors of the Jacobian matrix of F), $\Sigma_F := V(J_F)$ is set-theoretically the locus where F fails to be smooth (the critical locus of F).

The Milnor Number

This extra structure gives us information about the Milnor fibration:

Theorem (Milnor '68, Hamm '71)

Let $f:(\mathbb{C}^{n+1},0)\to(\mathbb{C},0)$ be a non-constant holomorphic function germ such that 0 is an isolated point of Σ_f . Then $\mathbb{F}_f\simeq\bigvee_{\mu_f}S^n$,

The Milnor Number

This extra structure gives us information about the Milnor fibration:

Theorem (Milnor '68, Hamm '71)

Let $f:(\mathbb{C}^{n+1},0)\to(\mathbb{C},0)$ be a non-constant holomorphic function germ such that 0 is an isolated point of Σ_f . Then $\mathbb{F}_f\simeq\bigvee_{\mu_f}S^n$, where

$$\mu_f := \mathsf{length}(\mathcal{O}_{\Sigma_f,0}) = \mathsf{dim}_{\mathbb{C}} \frac{\mathbb{C}\{x_0,\dots,x_n\}}{\left(\frac{\partial f}{\partial x_0},\dots,\frac{\partial f}{\partial x_n}\right)}$$

is the Milnor number.

Non-Isolated Critical Points

Goal

Find an analogous way to compute data about the Milnor fibration from Σ_f (i.e., from J_f) in the case where 0 is a non-isolated critical point.

Non-Isolated Critical Points

Goal

Find an analogous way to compute data about the Milnor fibration from Σ_f (i.e., from J_f) in the case where 0 is a non-isolated critical point.

For today, we will discuss a relative version of the preceding result for the non-isolated case.

Setup: Deformations

We will focus on 1-parameter deformations of holomorphic function germs. Consider:

- $f:(\mathbb{C}^{n+1},0) \to (\mathbb{C},0)$ a non-constant holomorphic function germ
- $F: (\mathbb{C}^{n+2}, 0) \to (\mathbb{C}, 0)$ with $F(x_0, \dots, x_n, t) = f_t(x_0, \dots, x_n)$ such that $f_0 = f$ a germ of a holomorphic deformation of f
- $\pi: (\mathbb{C}^{n+2},0) \to (\mathbb{C},0)$ with $\pi(x_0,\ldots,x_n,t)=t$ the projection to the parameter space

Deformations Preserving the Local Smooth Fiber

In these circumstances, we know the following by definition for $1 \gg \varepsilon \gg \delta > 0$ and $|v| < \delta$:

$$f_0^{-1}(v) \cap B_{\varepsilon} \cong \mathbb{F}_f$$
 whenever $f_0^{-1}(v) \cap B_{\varepsilon}$ is smooth

Deformations Preserving the Local Smooth Fiber

In these circumstances, we know the following by definition for $1\gg\varepsilon\gg\delta>0$ and $|v|<\delta$:

$$f_0^{-1}(v) \cap B_{\varepsilon} \cong \mathbb{F}_f$$
 whenever $f_0^{-1}(v) \cap B_{\varepsilon}$ is smooth

We now want to know the circumstances under which the following is true for $1\gg\varepsilon\gg\delta,\gamma>0$, $|v|<\delta$, and $|t|<\gamma$:

$$f_t^{-1}(v) \cap B_{\varepsilon} \cong \mathbb{F}_f$$
 whenever $f_t^{-1}(v) \cap B_{\varepsilon}$ is smooth (*)

That is, we want to know when the deformation can be used to study the Milnor fibration of f.

Counterexample

We can see that the condition (*) is not always satisfied:

Example

Let F(x,y,z,t)=xy-tz. Then the condition (*) does not hold — for example, $f_t^{-1}(0)\cap B_\varepsilon=\{z=\frac{xy}{t}\}\cap B_\varepsilon$ is smooth and contractible for arbitrarily small nonzero ε and t, but the Milnor fiber of f=xy is homotopy-equivalent to S^1 .

Ideal-Theoretic Control of Deformations

Theorem (H.)

Let f, F, and π be as before. Suppose that, for all $k \geq 0$, the kth-order infinitesimal neighborhood $V(J_{F \times \pi}{}^{k+1})$ of $\Sigma_{F \times \pi}$ in \mathbb{C}^{n+2} is flat over the parameter space \mathbb{C} under the projection π . (Equivalently: The normal cone to $\Sigma_{F \times \pi}$ in \mathbb{C}^{n+2} is flat over the parameter space.)

Then the condition (*) holds.

Ideal-Theoretic Control of Deformations

Theorem (H.)

Let f, F, and π be as before. Suppose that, for all $k \geq 0$, the kth-order infinitesimal neighborhood $V(J_{F \times \pi}{}^{k+1})$ of $\Sigma_{F \times \pi}$ in \mathbb{C}^{n+2} is flat over the parameter space \mathbb{C} under the projection π . (Equivalently: The normal cone to $\Sigma_{F \times \pi}$ in \mathbb{C}^{n+2} is flat over the parameter space.)

Then the condition (*) holds.

That is, the condition (*) holds as long as t is a non-zerodivisor in $\mathbb{C}\{x_0,\ldots,x_n,t\}/\left(\frac{\partial F}{\partial x_0},\ldots,\frac{\partial F}{\partial x_n}\right)^{k+1}$ for all $k\geq 0$. (Equivalently: In $\operatorname{gr}_{\left(\frac{\partial F}{\partial x_0},\ldots,\frac{\partial F}{\partial x_n}\right)}\mathbb{C}\{x_0,\ldots,x_n,t\}$.)

Notes

- $\operatorname{gr}_I R := R/I \oplus I/I^2 \oplus I^2/I^3 \oplus \cdots$ is the associated graded algebra of I in R; its spectrum is the normal cone to V(I) in $\operatorname{Spec} R$.
- It is possible to relax the hypothesis slightly in various ways, at the cost of making the statement more complicated.
- The conclusion is also stronger than stated; really we get a Milnor-Lê fibration for $F \times \pi$, whose existence implies the condition (*) (and also allows us to retrieve monodromy information).

Idea of Proof (for the experts)

- We seek to apply Thom's first isotopy lemma by showing the transversality of smooth fibers of $F \times \pi$ to the boundary sphere family $S_{\varepsilon} \times \mathbb{C}$.
- Failures of transversality can be ruled out by producing a stratification (partially) satisfying the Thom condition.

Idea of Proof (for the experts)

- We seek to apply Thom's first isotopy lemma by showing the transversality of smooth fibers of $F \times \pi$ to the boundary sphere family $S_{\varepsilon} \times \mathbb{C}$.
- Failures of transversality can be ruled out by producing a stratification (partially) satisfying the Thom condition.
- The Thom condition can be phrased in terms of the relative conormal space $T_{F\times\pi}^*\mathbb{C}^{n+2}$.

Idea of Proof (for the experts)

- We seek to apply Thom's first isotopy lemma by showing the transversality of smooth fibers of $F \times \pi$ to the boundary sphere family $S_{\varepsilon} \times \mathbb{C}$.
- Failures of transversality can be ruled out by producing a stratification (partially) satisfying the Thom condition.
- The Thom condition can be phrased in terms of the relative conormal space $T_{F\times\pi}^*\mathbb{C}^{n+2}$.
- The behavior of the relative conormal space under specialization to a fiber of π is controlled by the failure of flatness of the infinitesimal neighborhoods of $\Sigma_{F \times \pi}$ over the parameter space.

Thanks for listening!

Happy birthday, Pepe!