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Last time, we developed an analogy between rings and topological spaces (or other kinds
of geometric objects) and used this to construct “the topological space most closely approx-
imating the geometry of a given ring” — that is, its spectrum. This time, we’ll start to dig
into the structure of these spectra a bit by way of examples; this will naturally lead us to
the definition of schemes.

1 A First Look at Affine Space

We begin with a modern take on some very classical objects of study — the collection of
polynomials in some finite number of variables and the spaces which can be defined by them.

Definition 1. Let k be a field (or, really, any ring, but let’s keep it simple for now) and
n ≥ 0 an integer. We define affine n-space over k by An

k := Spec k[x1, . . . , xn].

To start to get a sense of the geometry of these spaces, we examine a simple example,
which was one of the exercises from last week’s lecture:

Example 1. Consider A1
C := SpecC[x], called the affine line over C.

To understand this space, we must first figure out what its points are — this is to say
that we want to characterize the prime ideals p of C[x]. Since C[x] is a principal ideal
domain, we have p = (f) for some polynomial f ∈ C[x]. Moreover, the fact that C is
algebraically closed implies that f can be decomposed as a product of linear factors — that is,
f = a

∏d
i=1(x− ri) for some a, r1, . . . , rd ∈ C and d the degree of f . If a ̸= 0 and d > 1, we

can write f as a product of two polynomials not in p — this contradicts the ideal’s primality.
Hence the points we get for a ̸= 0 all correspond to prime ideals of the form p = (x − r)
for r ∈ C. The map of rings giving the “inclusion” of such a point will be exactly the map
C[x]→ C[x](x−r)/(x− r)C[x](x−r) ∼= C taking each polynomial g(x) to its value g(r) at r.

Because of the correspondence between these points and elements r ∈ C, we think of A1
C

as “the geometric realization of the 1-dimensional vector space C”; we will soon see that
a similar intuition applies to affine spaces over algebraically closed fields more generally.
However, the Zariski topology will not yield the familiar classical topology on C. Indeed, we
can characterize the Zariski-closed subsets of our copy of C as follows. By definition, they
are the collections of such points corresponding to maps which factor through the quotients
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R → R/I for each ideal I. Since C[x] is a principal ideal domain, these ideals are of the
form I = (h) for arbitrary polynomials h ∈ C[x]; for such an h, we can see that the points
x 7→ r which factor through C[x] → C[x]/(h) are precisely those such that h(r) = 0, which
is to say the roots of h. Since any nonzero polynomial has finitely many roots and any finite
collection of points in C admits a polynomial with roots exactly at the chosen points, we can
see that the closed subsets of our copy of C will be the whole space and all finite subsets.
That is, the Zariski topology on C is precisely the so-called cofinite topology.

This is almost a full description of A1
C — however, there is actually one additional point

we’ve missed so far. Our argument above that p = (f) =
(
a
∏d

i=1(x− ri)
)
must be of the

form (x− r) assumed a ̸= 0; in the case where this does not hold, we obtain the prime ideal
p = (0), corresponding to the map C[x]→ C[x](0)/(0)C[x](0) ∼= C(x) from C[x] to its field of
fractions. To understand how this new point fits into the topology, observe that C[x]→ C(x)
has kernel (0) and so does not factor through any nontrivial quotient; equivalently, it factors
through every localization C[x]→ C[x]f for f ̸= 0. Hence the point is dense, being contained
in every non-empty open subset of A1

C. This completes our description of the affine line.

The “extra point” in this example illustrates an important distinction between ring spec-
tra and the kinds of topological spaces we are used to dealing with in most branches of
geometry and topology: Such spaces are typically Hausdorff (T2, in Tychonoff’s hierarchy),
but ring spectra can even have non-closed points (that is, they need not even be T1). We
will see the appropriate algebro-geometric analogue to the Hausdorff property, called sepa-
ratedness, later on in the course.

The presence of non-closed points raises a natural question: Given such a point, what is
its closure? We are already in a position to answer this question topologically, on the level
of ring spectra — however, as usual, we will prefer to work algebraically, on the level of rings
themselves. To this end, note that the idea of asking “whether a point is closed” in our
analogy between rings and topological spaces already makes sense — our “point inclusions”

are certain maps R
ϕ−→ k, and to ask if a given ring map is a “closed inclusion” is precisely

to ask whether it is a quotient map, which is to say surjective. For a given prime p in a
ring R, the corresponding point inclusion is R → Rp/pRp; since quotients and localizations
commute, this factors as R → R/p ↪→ (R/p)(0). Hence the point will be closed precisely
when the quotient ring R/p is already a field — that is, exactly when p is maximal.

To understand our non-closed points — that is, those corresponding to non-maximal
prime ideals — we must do a bit better than just asking whether a given map is a closed
inclusion:

Question. Let R
ϕ−→ R′ be a map of rings which we think of as being some kind of “inclusion

of a subspace” (open, closed, a point, or whatever else). Which quotient of R should we
regard as “the closure of R′ in R”?

As usual, we clarify this question by reformulating our topological object in more cat-
egorical terms. Specifically, the closure of a subspace Y of a topological space X is the
smallest closed subspace containing it, which is to say the smallest closed subspace Z such
that the inclusion Y ↪→ X factors through Z ↪→ X. This characterization yields:

Question (revised). Let R
ϕ−→ R′ be a map of rings. What is the furthest quotient (i.e., the

quotient by the largest ideal) R→ R/I which ϕ factors through?
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Answer. R→ R/ kerϕ.

In the case where ϕ should not be thought of as an inclusion of some kind, we should
think of R→ R/ kerϕ as instead giving roughly the “closure of the image of ϕ” — with the
caveat, of course, that we say this without defining any kind of notion of “the image of ϕ”
itself.

From our prior discussion of the maps R→ Rp/pRp, it is now clear that the closure of the
point corresponding to p is given on the level of rings by the quotient R→ R/p; on the level
of topological spaces, we get the subspace SpecR/p ⊆ SpecR consisting of points R → k
which factor through this map. In particular, we can see that the point corresponding to
a prime q lies in the closure of the point corresponding to p if and only if q ⊇ p. (In this
case we say that the point corresponding to p specializes to the point corresponding to q
— observe that the poset of points of SpecR ordered by specialization exactly recovers the
poset of prime ideals of R ordered by inclusion.)

Proposition/Definition 1. Let R be a domain. Then the point given by the map R→ R(0)

from R to its field of fractions has the whole space as its closure — for this reason, we call
it the generic point of SpecR.

The idea of the terminology is that this point is somehow “everywhere in SpecR” in the
sense that it is close enough to every other point that its closure contains them all, while
simultaneously being “nowhere in particular” in the sense that it lies in the complement of
any particular closed set we might consider. Loosely speaking, we thus think of behavior
at the generic point as capturing the “typical” behavior at points of SpecR — we will see
concrete examples of this idea later on in the course.

If p is a prime in an arbitrary ring R, we can now understand how the point given by p
fits into the topology of SpecR by observing that it is the generic point of the closed subset
SpecR/p. This allows us to visualize SpecR by first getting a picture of the closed points,
then remembering that we also have a generic point living along every closed subset cut
out by a prime ideal. (Such subsets are called irreducible — we will explore the topological
meaning of this term later.)

In the case of our affine spaces An
k , we thus want to begin by understanding the maximal

ideals of k[x1, . . . , xn]. This is possible, at least in nice cases, by way of the following result:

Theorem 1 (Hilbert’s Nullstellensatz). Let k be a field and n ≥ 0 an integer. If m is a
maximal ideal of k[x1, . . . , xn], then the natural map k → k[x1, . . . , xn]/m is a finite field
extension.

Since all finite field extensions of an algebraically closed field are trivial, this yields:

Corollary 1 (Hilbert’s Weak Nullstellensatz). Let k be an algebraically closed field, n ≥ 0
an integer, and m a maximal ideal of k[x1, . . . , xn]. Then m = (x1 − r1, . . . , xn − rn) for
(r1, . . . , rn) ∈ kn.

Hence, as in the case of A1
C, we think of An

k as “the geometric realization of the vector
space kn”, at least in the case k = k̄.

(There is some apparent inconsistency in the literature as to the naming of theorems
— some readers may know the result we here call “Hilbert’s Nullstellensatz” as “Zariski’s
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Lemma” and some may have seen a(n at least superficially) different result referred to as
“Hilbert’s Nullstellensatz”. For an explanation of the various flavors of Nullstellensatz and
the relationships between them, I recommend Eisenbud’s Commutative Algebra with a View
Toward Algebraic Geometry.)

Armed with this knowledge, we turn our attention to a slightly more complicated example
than the affine line, which was also an exercise from last week:

Example 2. Consider A2
C := SpecC[x, y]. We wish to find the points of this space and

compute the topology.
By the Nullstellensatz, the closed points will be in bijective correspondence with C2. The

nontrivial closed subsets of this collection of closed points will be precisely those which can be
cut out by bivariate polynomial equations — that is, the points themselves, algebraic plane
curves, and finite unions of such subsets. Other than the generic point of the whole space,
the non-closed points turn out to correspond to ideals of the form (f) for f an irreducible
polynomial — these are the generic points of plane curves which are moreover irreducible.
(The precise definition of a “curve” in the algebro-geometric setting will be covered later,
when we get around to talking about dimension theory — as previously mentioned, we are
also deferring our discussion of irreducibility for the time being.)

This example provides our first instance of a troubling phenomenon, which we will now
explore. Observe that the maximal ideal (x, y) defines a closed point, corresponding to
the origin in the plane C2. Since it is closed, its complement U is an open subspace of
the topological space A2

C := SpecC[x, y], the union of open subspaces SpecC[x, y]x and
SpecC[x, y]y arising from localizations at single elements.

Our goal in this course so far has been to explore the intrinsic geometry of rings themselves
— spectra have been a useful tool for capturing some aspects of their geometry, but as
previously mentioned they do not encompass all of the same information. Therefore, we
should not be satisfied with U as a topological subspace — we would like to produce an
“open inclusion” on the level of rings realizing it. That is, we wish to answer the following:

Question. Is there a polynomial f ∈ C[x, y] such that the map SpecC[x, y]f ↪→ SpecC[x, y]
of spectra induced by C[x, y] → C[x, y]f is exactly the inclusion U ↪→ A2

C? Failing this, can
we rectify the issue by broadening our notion of open inclusion — that is, is there some other
ring map C[x, y]→ S such that SpecS → SpecC[x, y] is exactly U ↪→ A2

C?

Answer. No, on both counts.

This can be demonstrated by way of the following argument:

Exercise 1. Let S be a ring and ϕx : S → C[x, y]x and ϕy : S → C[x, y]y ring maps such that

the compositions S
ϕx−→ C[x, y]x → C[x, y]xy and S

ϕy−→ C[x, y]y → C[x, y]xy with the natural
localization maps coincide. Show that there exists a unique ring map ϕ : S → C[x, y] so that

the compositions S
ϕ−→ C[x, y] → C[x, y]x and S

ϕ−→ C[x, y] → C[x, y]y with the localizations
give ϕx and ϕy respectively. Use this to argue that, if we have arbitrary S, ϕx, ϕy, and ψ such
that the following diagram commutes (that is, every depicted sequence of maps from any of
the rings depicted to any other composes to the same thing), ψ admits a left inverse ϕ (i.e.,
ϕ ◦ ψ = idC[x,y]):
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C[x, y]

S

C[x, y]x C[x, y]y

C[x, y]xy

ψ

ϕx ϕy

(Here all unlabeled arrows are the appropriate localization maps.)
Conclude that ψ does not induce the map U ↪→ A2

C on the level of spectra.

That is, despite not being an open cover in the sense that (x, y) is the unit ideal or
in the sense of producing an open cover on the level of spectra, the collection {C[x, y] →
C[x, y]x,C[x, y] → C[x, y]y} “algebraically behaves like an open cover of C[x, y]” to some
extent. Unfortunately, this implies that our open subset U cannot be realized on the level
of rings, which leads us to try our hand at...

2 Defining Schemes

We’ve been getting acquainted with the idea that rings have some sort of geometric structure,
analogous to that of topological spaces. However, this analogy breaks down somewhat when
we consider the idea that we should be able to take unions of open subsets of a space to get
another open subset — as the previous example illustrates, we do not have a well-formed
way to glue together collections of rings along identifications of “open subspaces”, so we
cannot even construct a non-pathological “union of open subspaces”, much less one which
is itself an open subspace. To rectify this issue, we introduce schemes:

Definition 2 (informal). A scheme is a geometric object which looks like a ring locally at
each point.

That is, schemes are to rings as manifolds are to open balls in Euclidean space (modulo
the usual issue of ring maps “going the wrong direction” — we will think of scheme maps
with the directionality which agrees with the conventions for topological spaces and other
classical geometric objects).

In practice, this informal definition will often be all we really need — many arguments
will be made locally, for example, and so we can make sense of them without developing an
explicit, concrete construction of schemes. We will, of course, introduce the most common
formalism regardless, but it is best to maintain a clear sense of the informal picture in order
to avoid getting lost in the machinery.

How, then, should we actually construct schemes? There are several possible approaches,
not all of which we will develop in detail. The first is analogous to the construction of
manifolds from atlases:
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Idea. Define a scheme as a collection of rings together with “gluing data” — that is, a
collection of compatible identifications between “open subspaces” given by localizations of our
rings at single elements. Work out notions of refinement and equivalence for such “atlases”
and use this to define maps between schemes locally.

This is feasible in principle, but I’ve never seen anyone actually do it — as is the case
when defining manifolds via atlases, things quickly become quite cumbersome, despite the
conceptual closeness of this approach to our informal picture.

The second possible method comes from category theory — this is the (in)famous “functor
of points”:

Idea. Use the Yoneda embedding to regard rings as functors Ring→ Set; concretely, we iden-
tify R with the functor HomRing(R,−). We can then, in essence, create new functors which
are “unions of rings” by gluing the output sets together along the appropriate identifications
— this will give us our notion of schemes.

Here, as in many cases, the apparent abstruseness and alarming set-theoretic issues en-
demic to the category-theoretic framing are offset by a genuinely interesting and valuable
underlying perspective, which will ultimately be worth the price of admission for the student
willing to wade through the machinery. However, it’s generally best to approach such topics
with some degree of pre-existing intuition, so this course will largely ignore the functor of
points in favor of a more concrete viewpoint.

The third possible approach, the one we will actually use, is the sheaf-theoretic one.
This begins with the following observation, which is applicable in many contexts beyond the
setting of scheme theory:

Idea. If we have something which is “a topological space together with some extra data or
structure”, we can often keep track of this by remembering the “good functions” with respect
to this extra information on every open subspace.

Example 3. If X is a smooth manifold, the underlying topological space need not capture
all of the information of the smooth structure on X. However, if we also remember the rings
OX(U) := {smooth functions U → R} for open sets U ⊆ X (together with the maps between
them given by the restriction of functions from open sets to smaller ones), the resulting data
will uniquely determine the smooth structure.

To formalize this notion of a “collection of good functions”, recall the following definition
(or, if you haven’t seen it yet, learn it, from one of our reference texts or elsewhere):

Definition 3. Let X be a topological space. A sheaf (of sets) F on X consists of the
following data:

� For each open set U ⊆ X, a set F(U), called the set of sections of F on U .

� For each pair of nested open sets V ⊆ U ⊆ X, a map ρUV : F(U)→ F(V ), called the
restriction map from U to V .

These are subject to the following restrictions:
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� For each open set U ⊆ X, ρUU = idF(U).

� For each sequence W ⊆ V ⊆ U ⊆ X of open subsets, ρUW = ρVW ◦ ρUV .

� If U ⊆ X is open and {Uα}α∈A is an open cover of U , then, for each selection {fα ∈
F(Uα)}α∈A such that ρUα,Uα∩Uβ

(fα) = ρUβ ,Uα∩Uβ
(fβ) for all α, β ∈ A, there exists a

unique f ∈ F(U) such that ρUUα(f) = fα for all α ∈ A.

A map of sheaves µ : F → G consists of maps µ(U) : F(U) → G(U) for all open U ⊆ X
such that these maps commute with the restrictions.

In particular, our first motivating proposition from last week can be rephrased as saying
that maps to any particular topological space Y form a sheaf.

We can also speak of sheaves of more complicated objects, for example abelian groups or
rings, by requiring that all of the sets of sections are such objects and all the maps involved
are maps of such objects. (There is also a more streamlined general definition by way of
category theory, but we omit it here.)

We formalize the notion of “a space together with a collection of good functions”:

Definition 4. A ringed space is a pair (X,OX) such that X is a topological space and OX
is a sheaf of rings on X. A map of ringed spaces (X,OX) → (Y,OY ) consists of a pair
(ϕ, ϕ#) such that ϕ : X → Y is a continuous map of topological spaces and ϕ# : OY → ϕ∗OX
is a map of sheaves of rings on Y . (Here ϕ∗OX denotes the pushforward sheaf given by
(ϕ∗OX)(U) := OX(ϕ−1(U)), with the restriction maps inherited from OX .)

Since we are keeping our collection of “functions” abstractly in the form of a sheaf,
without any particular identification with literal functions on the underlying space, the map
ϕ# is necessary to record the behavior of such “functions” on Y under pullback to X — in
the case of actual continuous functions, this would be given by composition with ϕ.

To construct schemes as ringed spaces, we first define a ringed space capturing the ge-
ometry of a given ring:

Definition 5. Let R be a ring. The structure sheaf OSpecR on SpecR is the sheaf of rings
given by setting OSpecR(SpecRf ) := Rf for f ∈ R, with restrictions given by the localization
maps. (Since these open sets form a base for the Zariski topology by definition, and sheaves
are defined such that their sections are determined on open covers, this assignment is enough
to determine OSpecR — that the specified data is compatible with the sheaf axioms follows
from our original motivating proposition on the geometry of rings from last week.)

A ringed space of the form (SpecR,OSpecR) is called an affine scheme.

As we have previously mentioned, the topological space SpecR on its own does not record
all of the data of R; however, the ringed space (SpecR,OSpecR) does, since we can simply
take the ring OSpecR(SpecR) of so-called global sections of the structure sheaf to retrieve R.

Exercise 2. Show that a ring map R → S functorially induces a map of ringed spaces
(SpecR,OSpecR) ← (SpecS,OSpecS). (Recall that the equivalent result on the level of topo-
logical spaces was an exercise last week, in which we introduced the appropriate notion of
functoriality.)
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We can now realize schemes in general as ringed spaces which are locally affine schemes:

Definition 6. A scheme is a ringed space (X,OX) which is isomorphic to an affine scheme
locally at each point — that is, for every x ∈ X, there exists an open set U ∋ x, called
an affine open neighborhood of x, and a ring R such that we have (U,OU := OX |U) ∼=
(SpecR,OSpecR) as ringed spaces. (In fact, we can then see that R ∼= OX(U).)

A map of schemes ϕ : (X,OX) → (Y,OY ) is a map of ringed spaces which is induced
by a map of rings locally at each point — that is, for every x ∈ X, there exist affine open
neighborhoods V ∋ ϕ(x) and ϕ−1(V ) ⊇ U ∋ x such that ϕ|U : (U,OU) → (V,OV ) is exactly

the map of ringed spaces induced by the ring map OV (V )
(ϕ|U )#(V )−−−−−−→ OU(U).

(Equivalently, a map ϕ : (X,OX)→ (Y,OY ) of ringed spaces is a map of schemes if and
only if, for every pair of affine opens V ⊆ Y and U ⊆ ϕ−1(V ) ⊆ X, ϕ|U : (U,OU)→ (V,OV )
is induced by the corresponding map of rings.)

Now that we know what schemes and affine schemes are, we can streamline our termi-
nology somewhat:

Redefinition of Terms. From now on, when we refer to the spectrum of a ring R, we will
implicitly mean the affine scheme (SpecR,OSpecR) unless otherwise noted. Moreover, we will
typically suppress the structure sheaf from the notation, in these cases and for schemes in
general. In particular, when speaking of the affine space An

k , we will now implicitly regard
it as a scheme.

Rather than talking about “ring maps analogous to” open inclusions, closed inclu-
sions, point inclusions, or the like, we will now instead simply talk about the correspond-
ing types of map in the context of (affine) schemes. (In the case of open inclusions, where
we can have non-affine open subschemes even of affine schemes, we will refer to the maps
SpecRf ↪→ SpecR induced by the localizations as inclusions of distinguished affine opens
instead.)

A key point is that, thanks to the parenthetical version of the definition of maps of
schemes above, any map of affine schemes is induced globally by a map of rings — therefore,
affine schemes and their maps are exactly the same as rings and their maps, up to the change
in direction. (For those familiar with category theory: The category of affine schemes is the
opposite category of the category of rings.) To verify that requiring a map to be induced by
maps of rings on some collection of affine opens of the form above is indeed enough to force
the result on every pair of affine opens, we make use of the following observation:

Exercise 3 (Vakil’s Proposition 5.3.1). Let X be a scheme, x ∈ X a point, and U ∼= SpecR
and V ∼= SpecS affine open neighborhoods of x. Then there exist f ∈ R and g ∈ S such that
SpecRf ↪→ U ↪→ X and SpecSg ↪→ V ↪→ X both give the same open subscheme W of X
and W contains x.

From here the proof of the claim more or less follows from the local determinacy of the
various types of object involved.

With this dealt with, it is now worth pausing to reflect on our definition. We claimed
that it made sense to construct schemes as topological spaces together with some extra data
captured by sheaves of “functions”, and this appears to have worked, but a question remains:
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Question. Why does it make sense to think of elements of a ring R as “functions” on
SpecR?

Answer. There are at least two possible answers:

1. Let R be a C-algebra. Then there is a natural bijection between the set {f ∈ R}
and the set of C-algebra maps C[x] → R (since such a map is determined by the
image of x); moreover, this latter set is precisely the set of maps of C-schemes from
SpecR to A1

C. (By a “map of C-schemes” we mean the following: The inclusions
C ↪→ R and C ↪→ C[x] giving the algebra structure induce maps SpecR→ SpecC and
A1

C → SpecC. A map of C-schemes from SpecR to A1
C is a map of schemes commuting

with these maps to SpecC.) Hence, in this setting, we can think of ring elements as
literal maps of schemes to the affine line.

More generally, if R is a ring, there is a natural bijection between {f ∈ R} and the
set of ring maps Z[x] → R, for essentially the same reason as before. This latter set
is exactly the set of maps of schemes from SpecR to A1

Z := SpecZ[x].

2. In the case where R = k[x1, . . . , xn] for k an algebraically closed field, we saw by the
Nullstellensatz that the closed points of SpecR correspond to elements of the vector
space kn. We are used to thinking of polynomials f ∈ R as functions from kn to k; as
we can see by the exact construction of this correspondence, it is possible to interpret
the value of f at a point (r1, . . . , rn) ∈ kn as the image of f under the quotient map
R→ R/(x1 − r1, . . . , xn − rn) ∼= k giving the point inclusion on the level of rings.

Now, for R any ring and R
ϕ−→ k any point, closed or not, we can analogously think of

f ∈ R as having a “value” at this point given by ϕ(f), and so f can be viewed in this
way as a “function” on the collection of points of R. Note that, since the “points” in
the world of ring theory come in many different flavors, the “values” of f at different
points will not all live in the same field; in the case R = C[x], for example, the “values”
of an element of R at the closed points will all be elements of C, but the “value” at the
generic point will be an element of C(x). This is fine.

Pursuant to our second answer, we can offer new interpretations of the inclusions SpecRf ↪→
SpecR and SpecR/(f) ↪→ SpecR for f ∈ R a ring element:

Exercise 4. Let R be a ring and f ∈ R an element. Show that the points of SpecR contained
in SpecRf are precisely those where “the value of f” is nonzero. On the other hand, show
that the points of SpecR contained in SpecR/(f) are precisely those where “the value of f”
is zero. (Note that, although these “values” may live in various fields, asking which ones are
zero or nonzero will always make sense.)

We conclude by touching on the question of non-affine schemes. We have already seen
one such object, the complement of the origin in A2

C. The following example shows that
there are things we can do with this machinery beyond just constructing such “missing open
subschemes” of affine schemes:

Exercise 5. Construct a scheme P1
C, called the projective line over C, as follows. Begin with

SpecC[x] and SpecC[y] and identify the open subschemes SpecC[x]x and SpecC[y]y along
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the isomorphism induced by the C-algebra map C[x]x → C[y]y given by x 7→ y−1. Describe
the underlying topological space of P1

C and compute the ring OP1
C
(P1

C) of global sections of the

structure sheaf. Conclude that P1
C is not an affine scheme.
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