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So far, we’ve seen that rings have some kind of geometric structure and used this to
construct more general objects called schemes which are locally isomorphic to rings. However,
there are still many things we know how to do with topological spaces but not with schemes
— for example, taking fibers of a map. Our methodology for solving such issues so far has
been to figure out how to reformulate each construction in terms which lend themselves
well to generalization — to this end, we will now spend some time discussing an important
construction for topological spaces which encapsulates several different notions we may be
interested in defining for schemes.

1 Fiber Products of Topological Spaces

Definition 1. Let X, Y, Z be topological spaces and f : X → Z and g : y → Z continuous
maps. Then the fiber product of X and Y over Z is the topological space

X ×Z Y := {(x, y) ∈ X × Y | f(x) = g(y)},

which comes with the natural projections to X and Y induced by those of X × Y .

By construction, we can see that the compositions of f and g with these natural projec-
tions agree — that is, the following diagram commutes:

X ×Z Y Y

X Z

g

f

To see why this construction is important, consider the following special cases:

Example 1. If Z = {∗} in the one-point space, then X ×Z Y = X × Y is the usual product
of topological spaces.

*First draft of the TeX source provided by Márton Beke.
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Example 2. If g : Y ↪→ Z is the inclusion of a subspace, then X ×Z Y = f−1(Y ) is
this subspace’s inverse image under f , with the natural projections to X and Y giving the
inclusion f−1(Y ) ↪→ X and the restricted map f |f−1(Y ) respectively.

Example 3. As a special case of the previous example: If f : X ↪→ Z and g : Y ↪→ Z are
both inclusions of subspaces, then X ×Z Y = X ∩ Y is their intersection in Z.

For those who know some differential geometry, we have:

Example 4. If g : Y → Z is the projection of a vector bundle (or, indeed, any fiber bundle)
over Z, then X ×Z Y → X is the projection of the pullback bundle f ∗Y .

Exercise 1. Verify the preceding examples.

Example 4 hints at the motivation for the term “fiber product” — in general, we can
see that the fiber of the projection X ×Z Y → X over a point x ∈ X is exactly the fiber
g−1(f(x)) of g over f(x).

To work with fiber products more fluently, we introduce some additional terminology:

Definition 2. We call a diagram of the form

X ×Z Y Y

X Z

g′

f ′

g

f

(or any isomorphic diagram) a pullback square, or fiber square. We call the map
g′ : X ×Z Y → X the pullback of g along f , and use similar terminology for f ′ by
symmetry.

For a given property P of continuous maps, if a map g having P implies that g′ has P
for all such pullback squares, we say that P is preserved under pullback.

Many important properties of continuous maps turn out to be preserved under pullback.
Example 2 implies:

Example 5. Being an open inclusion is preserved under pullback, as is being a closed in-
clusion.

Indeed, we often define continuous maps as maps of sets which make one or the other of
the preceding statements true.

Likewise, Example 4 gives another instance of such a property:

Example 6. Being (the projection of) a vector bundle is preserved under pullback; the same
is true of fiber bundles in general.

We now want to replicate our definitions in the scheme-theoretic context — as usual, we
begin by reformulating things categorically, in terms of continuous maps:

Proposition 1. X ×Z Y is determined by the universal property expressed in the following
diagram:
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∀W

X ×Z Y Y

X Z

∀ϕ

∀ψ

∃!χ

g′

f ′

g

f

That is, for every choice of topological space W and continuous maps ϕ : W → X and
ψ : W → Y such that f ◦ ϕ = g ◦ ψ, there exists a unique continuous map χ : W → X ×Z Y
such that ϕ = g′ ◦ χ and ψ = f ′ ◦ χ. This property determines X ×Z Y and its projections
uniquely up to isomorphism.

This way of phrasing things can be used to prove an important fact — namely, that
“being a pullback is preserved under pullback”. The precise meaning of this is expressed in
the following two exercises:

Exercise 2. Let X̃,X, Y, Z be topological spaces and fix continuous maps X̃ → X, X → Z,
Y → Z:

X ×Z Y Y

X̃ X Z

Show that X̃ ×X (X ×Z Y ) ∼= X̃ ×Z Y .

Exercise 3. Let X, Y, Z, Z̃ be topological spaces and fix continuous maps X → Z, Y → Z,
Z̃ → Z:

X ×Z Y Y

Z̃

X Z

Show that (X ×Z Y )×Z Z̃ ∼= (X ×Z Z̃)×Z̃ (Y ×Z Z̃).

In particular, by pulling back along open inclusions, we can see that the fiber product of
X and Y over Z can be constructed locally on X, Y , and Z and glued together over open
covers. This prepares us to define...

2 Fiber Products of Schemes

Since we have a characterization of the fiber product of topological spaces in terms of its
universal property, we can now ask if there is an equivalent construction in the world of
schemes. However, as is often the case, it will turn out to be easier to first address this
question for affine schemes specifically — that is, for rings — and then proceed by gluing
things together along affine open covers. As such, we ask:
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Question. Let R, S, T be rings and r : T → R, s : T → S ring maps. Does there exist a
ring P together with ring maps s′ : R → P , r′ : S → P satisfying the universal property
expressed by the following diagram?

T S

R P

∀Q

r

s

r′
∀b

s′

∀a

∃!c

That is, are there such P , r′, and s′ so that, for every choice of ring Q and ring maps
a : R → Q and b : S → Q satisfying a ◦ r = b ◦ s, there exists a unique ring map c : P → Q
satisfying a = c ◦ s′ and b = c ◦ r′?

Answer. Yes; this is the tensor product R⊗T S.

In the first lecture, we discussed the idea that algebro-geometric concepts can generally
be seen as arising either algebraically or geometrically, the goal of the student being to
fill in the other half of the picture in either case. In this instance, we have something we
really could have approached from either angle, either by starting with the tensor product
and attempting to tease some kind of geometric meaning out of it through analogy or by
proceeding as we actually did. In either event, the result is illustrative of the benefits of
the algebro-geometric way of thinking, even just for the purposes of commutative algebra
— tensor products can be a bit mystifying when first encountered from the perspective of
ring theory, but building up a geometric understanding of the fiber product will allow you
to deal with them on a much more intuitive level.

We can now define fiber products for schemes:

Definition 3. Let SpecR → SpecT and SpecS → SpecT be maps of affine schemes. We
define the fiber product of SpecR and SpecS over SpecT by

(SpecR)×SpecT (SpecS) := Spec(R⊗T S).

If ϕ : X → Z and ψ : Y → Z are maps of arbitrary schemes, we define the fiber product
X ×Z Y of X and Y over Z affine-locally. That is, for an affine open cover {Wγ}γ∈Γ of Z
and affine open covers {Uγ,α}α∈Aγ and {Vγ,β}β∈Bγ of ϕ−1(Wγ) and ψ

−1(Wγ) respectively for
each γ ∈ Γ, we construct X ×Z Y by gluing together the products Uγ,α ×Wγ Vγ,β compatibly
with the open covers.

Of course, our immediate concern is to verify that this is well-defined and satisfies the
properties we expect of a fiber product:

Exercise 4. Check that this gluing makes sense for a given open cover and that the result-
ing scheme satisfies the universal property of Proposition 1 (with all topological spaces and
continuous maps replaced by schemes and maps of schemes respectively). Conclude that the
scheme constructed is independent of the chosen affine open covers.
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We can now make precise several things which we were previously a bit cavalier about.
For example, in our first lecture’s motivating proposition on affine open covers of affine
schemes (which we expressed at the time in the language of rings), we treated SpecRfg as
the intersection of SpecRf and SpecRg in SpecR on the basis that Rfg

∼= (Rf )g ∼= (Rg)f
is the “result of doing both localizations”. Knowing now that fiber products (and thus, in
particular, intersections) should be given by tensor products on the level of rings, we can
verify the correctness of this decision by observing that Rfg = Rf ⊗R Rg. Similarly, in
motivating our view of quotient maps as corresponding to closed inclusions, we touched on
the idea that the intersection of SpecRf and SpecR/I in SpecR should be the spectrum
of Rf/IRf

∼= (R/I)f , the “result of doing both the localization and the quotient” — and,
indeed, this is precisely Rf ⊗R R/I. Finally, we can likewise see that the intersection of
closed subschemes SpecR/I and SpecR/J in SpecR is exactly what we expect — that is,
(R/I)/J(R/I) ∼= (R/J)/I(R/J) ∼= R/(I + J) is simply R/I ⊗R R/J .

The natural next step, of course, is to explore the definitions of notions like inverse images
of subschemes, fibers over particular points, products of schemes, and so forth given to us
by our fiber product. First, however, we will clarify what we mean by “subschemes” exactly,
at least in the open and closed cases. In the case of open inclusions, which were central to
our definition of schemes in the first place, the definition is correspondingly immediate:

Definition 4. An open subscheme of a scheme (X,OX) is simply an open subspace on
the level of ringed spaces — that is, it consists of a pair (U,OU) such that U is an open
subspace of X and OU := OX |U is the restriction of the structure sheaf. The inclusion map
of such a subscheme is given by (i, i#) for i : U ↪→ X the inclusion and i# : OX → i∗OU the
map of sheaves given on each open subset V by the restriction map from V to U ∩ V in OX .

For closed inclusions, we require a different approach, inspired by the following fact from
topology:

Proposition 2. Let i : X → Y be a map of topological spaces and {Vα}α∈A an open cover
of Y . Then i is the inclusion of a closed subspace if and only if X ×Y Vα → Vα is for all
α ∈ A.

That is, being a closed inclusion is a local condition on the target. Hence, we can define:

Definition 5. A closed inclusion of affine schemes is the map SpecR/I → SpecR
induced by the quotient map R → R/I for some ring R and ideal I ⊆ R.

A map i : X → Y of arbitrary schemes is said to be a closed inclusion if it is a closed
inclusion of affine schemes affine-locally on the target — that is, for some (equivalently, any)
affine open cover {Vα}α∈A of Y , the maps X ×Y Vα → Vα for α ∈ A are all closed inclusions
of affine schemes.

We also introduce the following definition:

Definition 6. Let X be a scheme. A locally closed subscheme of X is any scheme which
can be realized as the intersection of an open subscheme of X with a closed one — that is,
one of the form U ×X Z for U ↪→ X an open inclusion and Z ↪→ X a closed inclusion, with
inclusion into X given by the natural map U ×X Z → X.
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Of course, all of these concepts are preserved under pullback:

Proposition 3. Let i : Y ↪→ X be an open inclusion, closed inclusion, or locally closed
inclusion. Then, for any map X ′ → X of schemes, the pulled-back map i′ : Y ×X X

′ → X ′

is also an open inclusion, closed inclusion, or locally closed inclusion respectively.

Now we can, for the sake of explicitness, write down definitions for some scheme-theoretic
analogues of topological concepts:

Definition 7. Let ϕ : X ′ → X be a map of schemes. Suppose that i : Y ↪→ X is an open
inclusion, closed inclusion, locally closed inclusion, or a point inclusion — that is, for
some affine open j : SpecR ↪→ X and prime ideal p ⊂ R, i is the composition of j with
the map on spectra induced by the natural map R → Rp/pRp. Then we define the inverse
image of Y under ϕ by ϕ−1(Y ) := Y ×X X

′. In the last case, where i is the inclusion of a
point y = Y , we also call this the fiber of ϕ over y and may also denote it by X ′

y.

As mentioned, we can also hope that knowing what a fiber product is will allow us to
define a notion of “the product of two schemes” without reference to a choice of a pair of
maps to some third scheme. We saw in Example 1 that we can do this for topological spaces
by applying the fiber product construction with the canonical maps from both factors to the
one-point space {∗}. Now, there does exist a scheme to which every scheme admits a unique
map — because each ring R admits a unique map Z → R, we find that every affine scheme
carries a unique map to SpecZ. Since maps of schemes are locally determined, we hence
get a unique map from an arbitrary scheme to SpecZ by considering the maps on any affine
cover and gluing them together.

Hence, we could define “the product of two schemes X and Y ” to be X×SpecZY , the fiber
product over SpecZ given by the unique maps X → SpecZ and Y → SpecZ. However, as
mentioned when we first discussed how to define “points” in the context of rings, SpecZ is in
many respects a poor analogue for the one-point space, and we would often like to consider
instead the schemes we have already designated as “points” — that is, the spectra of fields.

The difficulty in taking this perspective for our purposes now, of course, is that schemes
do not a priori come with distinguished maps to any particular field spectrum. To remove
this issue, essentially by fiat, we work with...

3 Schemes Over a Scheme

To sound slightly less silly, we could also call these objects “relative schemes”. The main
idea, as noted, is to fix some particular scheme and try to treat it as a “final object” like
{∗} or SpecZ — that is, one to which everything has a unique map. In practice, we do this
by simply fixing such maps:

Definition 8. Let S be a scheme. A scheme over S, or S-scheme, is a scheme X together
with a chosen map X → S, called the structure map of X over S. If X and Y are schemes
over S, a map of schemes over S from X to Y is a scheme map X → Y which composes
with the structure map of Y to the structure map of X — that is, one such that the following
diagram commutes:
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X Y

S

If S = SpecR for some ring R, we often drop “Spec” from the terminology and speak
simply of “R-schemes” or “schemes over R”. In the case where R is moreover a field, we
refer to it as the ground field.

This last situation is most common — as mentioned, we typically want our “final object”
to be the spectrum of some ground field k, by analogy to the one-point space in topology
(or, indeed, differential geometry). To understand what working over k means algebraically,
note that affine k-schemes are precisely the spectra of k-algebras — that is, of rings R with
some chosen inclusion k ↪→ R — and the maps of affine schemes over k are precisely those
induced by k-algebra maps on the level of rings. Hence k-schemes are exactly the objects we
would have gotten if we worked from the beginning with k-algebras and k-algebra maps in
place of rings and ring maps. (By the same token, or just by recalling that SpecZ is already
a “final object” for schemes, we can see that “Z-schemes” and their maps are the same thing
as schemes and their maps — there is no map of rings which is not a map of Z-algebras.)

Exercise 5. Observe that, since the inclusion R ↪→ C induces a map SpecC → SpecR,
every C-scheme can naturally be regarded as an R-scheme. Give a pair of C-schemes X, Y
and a map of R-schemes X → Y which is not a map of C-schemes.

(Hint: Work with affine schemes — what is this question asking if we phrase it in terms
of algebras?)

As promised, if we work over a given scheme S, we have a natural concept of the “product”
of two schemes — for S-schemes X and Y , this is X ×S Y . (We typically retain S in the
notation, writing ×S instead of just ×, to emphasize which setting we are working in.)

Exercise 6. Let k be a field. Show that A2
k
∼= A1

k ×k A1
k. (Recall: Here ×k is shorthand for

×Spec k.)
(More generally: Show for integers n ≥ 0 that An

k
∼= A1

k ×k · · · ×k A1
k︸ ︷︷ ︸

n copies

.)

In particular, by our previous examinations of A1
C and A2

C, we can see that the underlying
topological space of the fiber product is not in general given by the fiber product of the
underlying topological spaces. However, the properties of the tensor product guarantee
that, for k-schemes X and Y and a given field extension k ↪→ ℓ, the set of k-scheme maps
Spec ℓ→ X ×k Y will be exactly the product of the sets of k-scheme maps Spec ℓ→ X and
Spec ℓ→ Y ; the only issues are that not all of these maps are necessarily inclusions of points
in our most stringent sense of corresponding to a prime ideal in an affine patch and that we
have said nothing yet about the topology on this product of sets.

In the case where ℓ = k, however, we find that a map of k-algebras to ℓ is necessarily
surjective, and so any map of k-schemes Spec k → X defines a closed point. In the case
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where k = k̄ is an algebraically closed field, the Nullstellensatz tells us that all closed points
of the affine spaces An

k (and hence of any locally closed subscheme of such a space) are of
this form — in particular, for such schemes, ×k does induce the standard product on the
level of sets of closed points. (Observe by returning to A1

C and A2
C, however, that the induced

topology is not the product topology.)
Sometimes, we want to think of the fiber product as changing the scheme we are working

over:

Definition 9. Let S ′ → S be a map of schemes. Then the operation taking an S-scheme X
to the S ′-scheme X ×S S

′ is called base change from S to S ′.

As an example of the notion of base change in action, we observe for fixed n ≥ 0 that all
of our “different affine n-spaces” — that is, all An

k for different choices of a field k — arise
from one object over Z via base change:

Exercise 7. Let k be a field, n ≥ 0 an integer, and An
Z := SpecZ[x1, . . . , xn]. Show that

An
k
∼= An

Z ×SpecZ Spec k.

Inspired by this, we can expand our notion of “affine n-space”:

Definition 10. Let S be a scheme and n ≥ 0 an integer. We define affine n-space over S
by An

S := An
Z ×SpecZ S — observe that the natural projection of the fiber product to the factor

S allows us to view this as a scheme over S.

Those who have seen some differential geometry may find it helpful to view the map
An

Z → SpecZ as the “universal trivial rank-n vector bundle” from which all other trivial
rank-n vector bundles arise via pullback — we have not yet defined what we mean by a
“vector bundle” in the scheme context, but recall from our discussion last week that we
regard An

k as “the geometric realization of the vector space kn”, so we can at least see the
phenomenon on the level of fibers:

Exercise 8 (basically Exercise 7 again). Let S be a scheme, n ≥ 0 an integer, and Spec k ↪→
S the inclusion of a point. Verify that the fiber of An

S over this point is exactly An
k .

(Compare this to differential geometry, where the universal trivial rank-n vector bundle
is simply Rn → {∗}.)

Affine spaces over schemes can be used to define a very typical constraint we impose on
schemes and their maps:

Definition 11. A map ϕ : X → Y of schemes is said to be of finite type if there exists an
open cover {Vα}α∈A such that each ϕ−1(Vα) admits an open cover by finitely many subschemes
Uα,1, . . . , Uα,kα so that each ϕ|Uα,i

: Uα,i → Vα factors as

Uα,i ↪→ Anα,i

Vα
→ Vα

for Uα,i ↪→ Anα,i

Vα
a closed inclusion and Anα,i

Vα
→ Vα the natural map.

If we relax the definition by allowing our open covers of the ϕ−1(Vα) to be infinite, ϕ is
instead said to be locally of finite type.

For S a scheme, we define a (locally) finite-type scheme over S to be a scheme over
S such that the structure morphism is (locally) of finite type.
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To understand this definition, observe that we can take our open cover of Y to be affine
without loss of generality, and that over an affine patch Vα = SpecR each composition Uα,i ↪→
Anα,i

Vα
→ Vα is given on the level of rings by R → R[x1, . . . , xnα,i

] → R[x1, . . . , xnα,i
]/Iα,i for

some ideal Iα,i. That is, for one scheme to be locally of finite over another means essentially
that it is affine-locally constructed out of finitely-generated algebras; requiring it to be of
finite type (without the “locally”) simply imposes an additional finiteness condition of a
more topological nature.

In practice, a great deal of algebraic geometry happens in the setting of finite-type
schemes over a field (particularly an algebraically closed one). In particular, the study of
finite-type schemes over C is closely connected to complex algebraic geometry in the classical
sense — from the definition, we can see that such an object is obtained by gluing together
finitely many closed subschemes of affine spaces An

C, which is the scheme-theoretic way to
say “finitely many spaces cut out in Cn by polynomial equations”.

Example 7. Let X = SpecC[x]x. Because X includes into the affine line SpecC[x] as an
open subset, rather than a closed one, it may be tempting to think that X is not a finite-type
C-scheme. However, the isomorphism C[x]x ∼= C[x, y]/(xy−1) of C-algebras which identifies
x with x and x−1 with y allows us to realize X as a closed subscheme of A2

C, so it turns out
to be of finite type over C after all. Hence the setting of finite-type schemes over a field is
slightly less restrictive than it may appear at first.
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