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Last week, we discussed some features of the geometry of schemes which lack ready
analogues in the most familiar topological settings. Of particular interest for our ongoing
discussion will be the ideas that, at least for Noetherian schemes, (the underlying sets of)
integral closed subschemes form the basic building blocks out of which all closed subsets are
formed (by taking unions), and that, for each such integral closed subscheme, we have a
“generic point” whose closure is precisely that subscheme.

We now turn to a notion which does have an analogue in the world of, say, differential
geometry, but which is difficult to formalize by direct analogy: dimension. This difficulty
arises from the fact that, for manifolds, we have local isomorphisms everywhere to objects
(open subsets of Euclidean space) for which the right notion of dimension is obvious — on
the other hand, schemes are locally isomorphic only to ring spectra, a much more varied class
of object for which the “correct” definition of dimension is already unclear. In the setting
of classical algebraic geometry — for example, for polynomially-defined subsets of real or
complex Euclidean space — the outlook is not quite as bleak; we can think of removing
the singular points, those at which our set is not already a manifold, and computing the
dimension of the remainder. However, this too generalizes poorly (e.g., to SpecZ), and in
fact we will see that for schemes it is more expeditious to define singular points in terms
of dimension than the reverse. Instead, we take advantage of the exotic features discussed
last week to formalize dimension in a way which, while unfamiliar at first blush, ultimately
captures our basic intuitions.

(For a historical account of the notion of dimension in algebraic geometry, see Chapter 8
of Eisenbud’s Commutative Algebra with a View Toward Algebraic Geometry.)

1 Krull Dimension

Let us begin by calibrating our intuitions a bit. As we know, the points in the world of
schemes are the spectra of fields — as such, we should expect “dimSpec k = 0” for k a field.
More generally, we have seen for n ≥ 0 and k a field that An

k should be thought of as “the
geometric realization of the vector space kn”, which is to say Euclidean n-space over k, and
hence we should expect “dimAn

k = n”.

*First draft of the TeX source provided by Márton Beke.
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Figure 1: Two schemes which should probably be one-dimensional, all things considered.

Now let X be a scheme and Y ↪→ X a proper closed subscheme. It is fairly clear that, for
any reasonable notion of dimension, we should have “dimY ≤ dimX” — that is, we should
not be able to decrease a scheme’s dimension by enlarging it. This naturally invites:

Question. When should and shouldn’t we expect that “dimY < dimX”?

Even by considering Euclidean space over C or R, we have reason to expect that the
answer should be “fairly often” — if we take the vanishing locus of even a single polynomial
in Cn or Rn, we can see that the result should be a closed subset of strictly smaller dimension
in the sense mentioned above. (By contrast, the classical topology is rife with closed subsets
of the same dimension as the ambient space — consider a closed ball, e.g.) Nevertheless, there
are some algebro-geometric circumstances where a closed subscheme should be considered
full-dimensional:

Answer (partial). If Y has all the same points as X — for example, Y = Xred — we should
think that “dimY = dimX”.

That is, in keeping with our idea that nonreduced structure reflects something insub-
stantial, something infinitesimally small, we do not take its addition or removal to change
the dimension of a scheme. Hence we can limit our focus to the case where X is reduced,
and ask our question again in this context.

Here we still have situations where we should want equality:

Answer (very partial). If X is not integral, we should think that there is at least some possi-
bility that “dimY = dimX” — after all, we could, e.g., remove some irreducible components
from a Noetherian scheme in such a way that the dimension of the remaining ones should
still be as large. (See Figure 1 for an example.)

Let us consider for a moment, then, the case where X is integral. In this situation, as we
have seen, Y cannot have all the same points as X, so its underlying set has some nonempty
open complement — and this, being a nonempty open subset of the underlying space of an
integral scheme, is dense. (Because it contains the generic point, if you’d like.) This is to say
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that Y is in some sense quite small relative to X, since its complement is large enough to
have closure the whole space — if you prefer, you can also note that Y has empty interior.
Hence:

Answer (still partial). If X is integral, we should expect that “dimY < dimX”.

Even if we drop the integrality hypothesis on X itself, this viewpoint still suggests some-
thing about the dimension of X. Specifically, suppose that we have a chain Y0 ⊂ Y1 ⊂ . . . ⊂
Yk of (distinct) integral closed subschemes of X. Then, precisely because the Yi are integral,
we should think that “dimX ≥ dimYk ≥ dimYk−1 + 1 ≥ . . . ≥ dimY0 + k ≥ k” (since we
should want our schemes, at least nonempty ones like Y0, to have nonnegative dimension).

This provides the groundwork for our formalization of the notion of dimension:

Definition 1. Let X be a nonempty scheme. Then the dimension of X is

dimX := max{k ≥ 0 | ∃Y0 ⊂ Y1 ⊂ . . . ⊂ Yk integral closed subschemes of X},

where we take the maximum to be ∞ if the set in question is not bounded above.
If R is a ring, then dimR := dimSpecR is called the Krull dimension of R.

Our prior discussion tells us that this quantity should at least be a lower bound on the
“dimension” of a scheme — the intuition for the idea that it should be an upper bound
as well is subtler. At least in the Noetherian setting, where we have the decomposition of
any closed subset into irreducible components, this is a strengthening of the idea that we
should expect a space to have closed subspaces of all smaller dimensions — if we think of
smooth manifolds, for instance, we can observe that it is not and should not be possible
to construct a two-dimensional manifold without any one-dimensional closed submanifolds.
More pragmatically, one can observe by way of justification that this is the notion which
turns out to match our intuitions for affine space over a field, for example.

Example 1. Let X = A2
C. Set Y0 = SpecC[x, y]/(x, y), Y1 = SpecC[x, y]/(y2 − x3), and

Y2 = X. Then, since the corresponding rings are domains, we can see that these closed
subschemes are all integral, and we have Y0 ⊂ Y1 ⊂ Y2. This situation is depicted in Figure
2.

Hence dimA2
C ≥ 2, as expected; to show this is an equality, we can either remember our

description of the points of A2
C from Lectures 1 and 2, or use the machinery which we will

develop later on in this lecture.

Through the correspondence between integral closed subschemes and their generic points,
we can also phrase this in terms of specializations of points:

Proposition 1. Let X be a nonempty scheme. Then

dimX = max{k ≥ 0 | ∃p0, . . . , pk ∈ X distinct points such that pi−1 ∋ pi ∀1 ≤ i ≤ k}

(where we again take the maximum to be ∞ if the set is unbounded).

The proof is by taking generic points of chains of integral closed subschemes, in one
direction, and taking closures of chains of points, in the other — be mindful of the reversal
in indexing between the chains used in the two definitions.

From this proposition or the definition itself, we find:
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Figure 2: The closed subschemes Y0 ⊂ Y1 ⊂ Y2 of Example 1.

Proposition 2. Let R be a ring. Then

dimR = max{k ≥ 0 | ∃p0 ⊂ . . . ⊂ pk prime ideals of R}

(with the usual caveat about ∞).

This was the original definition of Krull dimension. Note that the indexing agrees with
that of the prior proposition, rather than the definition.

Remark 1. Either from the original definition or from the characterization in terms of
specializations of points, we can see that the dimension of a scheme depends only on its
underlying space. In general, for topological spaces, we can define a corresponding notion of
dimension by replacing “integral closed subschemes” in our definition with “irreducible closed
subsets” — the dimensions of a scheme and its underlying space will then agree. (Note that,
as with the idea of irreducible sets itself, this is not a very useful concept in the setting of
Hausdorff spaces.)

In the Noetherian setting, where we can realize a scheme’s underlying space as the finite
union of irreducible pieces, we can see that the dimension, as we would expect, is just the
dimension of the largest piece:

Proposition 3. Let X be a nonempty Noetherian scheme. Then

dimX = max{dimY | Y is an irreducible component of X}.

(In the case of ring spectra, it may be useful here to remember our correspondence
between irreducible components and minimal primes — the key is that any integral closed
subscheme will be contained in one or more of the irreducible components.)

Example 2. Let X = SpecC[x, y, z]/(xz, yz) be the reduced subscheme of A3
C whose under-

lying space is the union of the xy-plane with the z-axis, as depicted in Figure 3.
The prime ideals of C[x, y, z]/(xz, yz) are (canonically identified with) the prime ideals

of C[x, y, z] containing the ideal (xz, yz); it is clear that these are precisely the prime ideals
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Figure 3: The scheme X of Examples 2, 3, 4, and 5.

which contain either (z) or (x, y). Since the ideals (z) and (x, y) are prime, it follows that
they are the minimal primes of C[x, y, z]/(xz, yz) — hence our irreducible components are
the xy-plane (the vanishing of (z)) and the z-axis (the vanishing of (x, y)), as expected.

Now, the primes containing (z) correspond to points of SpecC[x, y, z]/(z) ∼= SpecC[x, y] ∼=
A2

C and the primes containing (x, y) correspond to points of SpecC[x, y, z]/(x, y) ∼= SpecC[z] ∼=
A1

C — these correspondences preserve the specialization relations. Hence the poset of primes
of C[x, y, z]/(xz, yz) under containment is obtained from those of C[x, y] and C[z] precisely
by taking the disjoint union and then identifying the maximal ideals ((x, y) and (z), respec-
tively) which correspond to the point of intersection of the two irreducible components (i.e.,
the closed point cut out by (x, y, z) in the original ring).

From this, we can see that a longest chain of primes will be a longest such chain contained
in either irreducible component, and that this maximal length will be 2, coming from the irre-
ducible component cut out by (z). Hence dimX = 2 = max{2, 1} = max{dimA2

C, dimA1
C},

as we should expect.

It is fairly clear that the scheme of the preceding example should be globally 2-dimensional,
since it is the union of a 2-dimensional object with a 1-dimensional one. However, if we pick
a small enough open neighborhood of a point on the z-axis away from the origin, we find
that this neighborhood should be 1-dimensional; we would like to be able to formalize this
idea of “the dimension around a point”. Fortunately, we already have a construction, our
“intersection of all open subschemes containing a point”, which intrinsically captures facts
about sufficiently small open neighborhoods of a point:

Definition 2. Let X be a scheme and x ∈ X a point. Then we call the Krull dimension
dimx X := dimOX,x of the local ring at x the (local) dimension of X at x.

We can verify that this gives the expected result in the case under consideration:

Example 3. We return to the scheme X = SpecC[x, y, z]/(xz, yz) discussed in Example 2
and depicted in Figure 3; let R = C[x, y, z]/(xz, yz). We will compute the local dimensions
of X at its closed points to verify that the result is as expected.
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First consider a closed point on the z-axis away from the origin — this is cut out by
a maximal ideal of the form m = (x, y, z − γ) for γ ∈ C∗ := C \ {0}. Since z is in the
complement of such an ideal and introducing an inverse for z necessarily kills x and y in R
(e.g., x = xzz−1 = (xz)z−1 = 0z−1 = 0), we find that these elements are in the kernel of the
localization map R → Rm. Hence we can see that Rm

∼= C[z](z−γ); this has Krull dimension
1, so the dimension of X at such a point is 1, as desired.

Now consider a closed point on the xy-plane away from the origin, which will be cut out
by a maximal ideal of the form m = (x − α, y − β, z) for α, β ∈ C with (α, β) ̸= (0, 0).
Then, in particular, at least one of x and y is not contained in m, so z is in the kernel of
the localization map R → Rm. As such, we can see that Rm

∼= C[x, y](x−α,y−β), which has
Krull dimension 2 (to show this, recall that the prime ideals of this ring are in bijection with
the prime ideals of C[x, y] contained in (x− α, y− β)). Hence the local dimension at such a
point is 2, again as expected.

Finally, we can see that the local dimension at the origin (cut out by (x, y, z)) is 2,
essentially by following a modified version of the reasoning of Example 2 or more simply by
applying Proposition 3.

We will defer our discussion of the local dimensions at non-closed points until later, when
we have a better grasp of their meaning.

Armed with this machinery, we can now verify that dimension is in some sense a local
property — specifically, the dimension of a scheme is its largest dimension at any point:

Proposition 4. Let X be a nonempty scheme. Then dimX = max{dimxX | x ∈ X}. If
X is moreover Noetherian or finite-dimensional, then in fact dimX = max{dimx X | x ∈
X is a closed point}.

This is perhaps easiest to see using the definition of dimension in terms of finite chains
of specializing points — if x is the point in such a chain contained in the closure of all the
others, we can see that they will be contained in every open neighborhood of x; in particular,
there is a corresponding chain of prime ideals in OX,x. To check dimensions only at closed
points, the essential condition we need is that X contain no infinite descending chain of
integral closed subschemes — this is evident a fortiori if X is Noetherian, and can be seen
directly if X is supposed finite-dimensional.

From the proposition, it follows that dimension is not only “stalk-local” in this sense,
but indeed affine-local; that is, we could have defined dimension by the old standby of first
defining it for affine schemes (i.e., for rings), then stitching together over affine open covers in
the appropriate sense (in this case, by taking the maximum of dimensions on affine patches).
(However, since the Krull dimension is not particularly intuitive in any way independent of
the geometry, the advantages of this approach are limited.)

The proposition also allows us to more easily verify a basic dimensional intuition:

Exercise 1. Let X be a nonempty scheme. Show, for Y a nonempty locally closed subscheme
of X, that dimY ≤ dimX.

We conclude our initial discussion of dimension by remarking on some seemingly patholog-
ical behavior. The phrase “Noetherian or finite-dimensional” in Proposition 4 may initially
strike one as odd — after all, shouldn’t Noetherian and finite-dimensional be the same thing?
(Or, at the very least, shouldn’t one imply the other?)
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Figure 4: The subschemes Y and Z, respectively, of X in Example 4.

Exercise 2. Show that the local ring C[x, x1/2, x1/3, x1/4, . . .](x,x1/2,x1/3,x1/4,...) is non-Noetherian
and has Krull dimension 1.

Hence there are finite-dimensional rings which are not Noetherian; it turns out to also be
true that there are Noetherian rings which are infinite-dimensional. (For one example, due
to Nagata, see Exercise 12.1.M of Vakil.) However, such pathologies are rarely encountered
in practice.

2 Codimension

We come now to the notion of codimension. For those with a background in differential
geometry, it may seem odd that we should need to treat this separately from dimension —
for a manifold, after all, the codimension of a closed submanifold is simply the difference
in dimensions. However, in the more permissive (in some senses) context of schemes, this
quantity is not quite as useful:

Example 4. We return again to the scheme X = SpecC[x, y, z]/(xz, yz) of Examples 2
and 3. Consider the integral closed subschemes given by Y = SpecC[x, y, z]/(x, y) and
Z = SpecC[x, y, z]/(x − y, z). These are both 1-dimensional integral subschemes of a 2-
dimensional scheme but, as we can see in Figure 4, there is a qualitative difference in how
they are embedded — despite technically having lower dimension than X, Y is “mostly full-
dimensional”, while Z has strictly smaller dimension than its surroundings everywhere.

To rectify the issue, we return to the idea that dimensions — and now, “jumps in dimen-
sion” in the sense we will want for codimension — should be witnessed completely by chains
of (integral) closed subschemes; for example, if we have an integral subscheme we want to
think of as having “codimension 2”, we should expect it to be contained in an integral sub-
scheme of “codimension 1”, with no possibility that we can jump between “codimension 2”
and “codimension 0” without such an intermediate step. That is, we define:
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Definition 3. Let X be a scheme and Y an integral closed subscheme. Then the codimen-
sion of Y in X is

codimX Y := max{k ≥ 0 | ∃Y = Y0 ⊂ Y1 ⊂ . . . ⊂ Yk integral closed subschemes of X}

(or, as usual, ∞ if the set is unbounded).
If, instead, X is a scheme and Y is an arbitrary nonempty closed subscheme, we define

the codimension of Y in X by setting

codimX Y := min{codimX Z | Z an integral closed subscheme of Y }.

That is, we modify the definition of dimension by considering only chains of integral
closed subschemes ascending from Y . Observe that the definition of the codimension of
an arbitrary closed subscheme is well-formed; a priori one might worry about being able
to construct a scheme so pathological that it has no integral closed subschemes, but the
correspondence between integral closed subschemes and points shows that this cannot occur
if the scheme is nonempty. It is also worth noting that, in practice, this definition in the non-
integral case is perhaps not so useful — to avoid confusion, it will generally be best just to
think directly about the different irreducible components of a subscheme (in the Noetherian
case, where these are well-defined) and consider their codimensions individually.

As in the case of dimension, and by essentially the same reasoning, we have ideal-theoretic
and point-theoretic descriptions of codimension:

Proposition/Definition 1. Let R be a ring and p ⊂ R a prime ideal. Then

codimSpecR(SpecR/p) = max{k ≥ 0 | ∃p0 ⊂ . . . ⊂ pk = p prime ideals of R}

is the quantity which, in commutative algebra, is called the height of p.
More generally, let X be a scheme and Y an integral closed subscheme with generic point

η. Then

codimX Y = {k ≥ 0 | ∃p0, . . . , pk = η ∈ X distinct points such that pi−1 ∋ pi ∀1 ≤ i ≤ k}.

As a consequence, we find that codimX Y = dimη X := dimOX,η is the local dimension
of X at the generic point of Y .

This latter characterization sheds some light on both the idea of codimension and the
meaning of local dimension at a non-closed point. In particular, we find that what we call
“codimension” might be better termed “generic codimension” — it is now clear that this
concept ignores anything that happens on any particular proper closed subset of the integral
closed subscheme being considered. For instance, we see that it should not matter that the
subscheme Y of Example 4 is embedded into X with a positive difference in dimension at
the origin; since the origin is a proper closed subset of Y , we can ignore this behavior and
note that Y is full-dimensional in X everywhere else along its length. Hence its codimension
should be zero, which turns out to be the case:
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Example 5. Let X = SpecC[x, y, z]/(xz, yz) as in Examples 2, 3, and 4 (see Figure 3) and
recall in particular our description of the points of X in Example 2. We will now compute the
codimensions of the corresponding integral closed subschemes. Let R = C[x, y, z]/(xz, yz).

The codimensions of the closed points are, by Proposition/Definition 1, simply the local
dimensions of X at the corresponding points, which we computed in Example 2. (It is a good
idea to go back and check that this agrees with your intuitive notion of the “codimension of
a point”.)

The generic point of the z-axis corresponds to the prime ideal (x, y). Since this is one of
the minimal primes of R, it has height 0; hence the codimension of the z-axis is 0 as expected
by Proposition/Definition 1.

Likewise, since the generic point (z) of the xy-plane is a minimal prime of R, we find
that the xy-plane has codimension 0.

Finally, we compute the codimension of an integral curve in the xy-plane — these will
have generic points corresponding to the non-maximal primes p containing (z). We can see
such primes have height 1 (witnessed by the chain (z) ⊂ p), so these curves have codimen-
sion 1. Thus, in particular, codimension gives a quantification of the qualitative difference
described in Example 4 and depicted in Figure 4.

Here we have seen some behavior which we might as well write down in general:

Proposition 5. Let X be a Noetherian scheme and Y an integral closed subscheme. Then
Y is an irreducible component of X if and only if codimX Y = 0.

That is, Y is an irreducible component if and only if it is “set-theoretically all of X
generically on Y ”. More broadly, we can think that codimension captures some kind of
“generic difference in dimension” in general — however, some caution is needed, since this
has unexpected consequences, and one can produce, e.g., an irreducible Noetherian scheme
of dimension 2 with a codimension-1 integral closed subscheme of dimension 0 (see Vakil
Section 12.3.13). In any case, we will proceed with some rough intuition and a healthy dose
of caution about applying it too freely.

3 Krull’s Height Theorem

In the Noetherian setting, the following useful theorem gives some useful algebraic control
on the possible codimension(s) of (the irreducible components of) a subscheme defined as
the “vanishing locus” of a collection of “functions” — for simplicity, we treat the affine case:

Theorem 1 (Krull’s Height Theorem). Let R be a Noetherian ring and f1, . . . , fc ∈ R.
Let Z be an irreducible component of SpecR/(f1, . . . , fc). (I.e., Z = SpecR/p for p ⊂ R
minimal among primes containing (f1, . . . , fc).)

Then codimSpecR Z ≤ c.

The c = 1 case is called “Krull’s Principal Ideal Theorem”, or, to sound fancy, “Krull’s
Hauptidealsatz” (this is German for “Principal Ideal Theorem”). Some authors may also
refer to the general result by this terminology, even though it no longer specifically involves
a principal ideal. The basic idea is that “cutting out by 1 equation” should “reduce the
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Figure 5: Some schemes in affine spaces which are singular at the origin and nonsin-
gular elsewhere — respectively, SpecC[x, y]/(y2 − x3), SpecC[x, y]/(y2 − x2(x + 1), and
SpecC[x, y, z]/(xz, yz).

dimension” by at most 1, or more generally that “cutting out by c equations” should “reduce
the dimension” by at most c — of course, we know by this point that the meaning of the
bounds on codimension here is somewhat more subtle than the literal interpretation of these
statements would suggest.

The proof of Krull’s Height Theorem uses some machinery we have yet to cover, so we
will not go into the details for now. Instead, we apply it to refine our understanding of
dimension:

Exercise 3. Use Krull’s Height Theorem to show that, if R is a Noetherian local ring with
maximal ideal m = (f1, . . . , fd), dimR ≤ d.

Hence, although we have already noted that Noetherian rings may be infinite-dimensional
in general, we can see that Noetherian local rings exhibit no such pathology.

We can also confirm at long last that our definition of dimension gives the expected result
for affine space:

Exercise 4. Let k be a field and n ≥ 0 an integer. Use the result of the preceding exercise
(and some other stuff from this lecture) to prove that dimAn

k = n.

4 Regularity

As mentioned, our concept of dimension will allow us to take a first look at the idea of
singular and nonsingular points — that is, points where a given scheme doesn’t or does
“look like a manifold”. (For some examples of this behavior, see Figure 5.)

We will capture this phenomenon by returning to the notion of “infinitesimal directions
at a point” which came up when we discussed nonreducedness, and in particular the idea
that these “directions” correspond somehow to nilpotent elements:

Definition 4. Let X be a scheme, x ∈ X a point, and k ≥ 0 an integer. Then, for
R = OX,x the local ring at x and m its maximal ideal, we call SpecR/mk+1 the kth-order
infinitesimal neighborhood of x in X.
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The idea is that elements of our local ring R should be thought of as “functions defined
locally near x on X” (that is, for those who know the term, germs of functions) and mk+1

should be thought of as “the collection of such local functions vanishing to order at least
k+1 at x”. That is, what we get by restricting a function to the infinitesimal neighborhood
SpecR/mk+1 should be thought of as “its value and derivatives of orders ≤ k at x”. (This
is an extension of our idea that restricting to the 0th-order infinitesimal neighborhood, x =
Specκ(x) = SpecR/m itself, gives the value of a function at x.) Note that all infinitesimal
neighborhoods of a point have underlying space simply the point itself — the additional
behavior is entirely on the level of nonreduced structure.

It may be easiest to see this behavior through a concrete example:

Example 6. Let X = A2
C = SpecC[x, y] and take x to be the origin. Then our local ring

is R = C[x, y](x,y), with maximal ideal m = (x, y). Let f =
∑

i,j aijx
iyj ∈ C[x, y] be a

polynomial.
As we know, the image of f under restriction to the 0th-order infinitesimal neighborhood

SpecR/(x, y) ∼= SpecC is simply a00, its value at the origin.
Now consider the restriction to the 1st-order infinitesimal neighborhood SpecR/(x2, xy, y2).

f is sent to the element a00 + a10x+ a01y, from which we can recover both the value and all
first-order directional derivatives of f at the origin.

Likewise, if we instead restrict our function f to the 2nd-order infinitesimal neighborhood
SpecR/(x3, x2y, xy2, y3), the result is a00+a10x+a01y+a20x

2+a11xy+a02y
2, which tells us

both all of the previous information and the data of the 2nd-order derivatives (if you want,
the Hessian matrix) of f at the origin.

Restriction to higher-order infinitesimal neighborhoods behaves similarly.

At least for now, we will be interested mainly in the case k = 1 — that is, the ring R/m2.
As noted, its spectra is the 1st-order infinitesimal neighborhood of the point, capturing
values and first-order derivatives of functions. Considering its maximal ideal m/m2, which
consists of “functions” on the infinitesimal neighborhood with value zero at x, then allows
to get at just the derivative information without worrying about values:1

Definition 5. Let X be a scheme, x ∈ X a point, and m ⊂ OX,x the maximal ideal of the
local ring. Then m/m2 is the Zariski cotangent module of X at x; its elements are called
cotangent vectors at x.

The “vector” terminology is justified by the fact that the OX,x-action by multiplication
on m/m2 factors through the quotient OX,x ↠ OX,x/m =: κ(x) (since multiplying m by any
element of m gives a result which is zero modulo m2) — hence the Zariski cotangent module
is really a vector space over the field κ(x). Indeed, the standard terminology reflects this:

Remark 2. The “Zariski cotangent module” terminology is slightly nonstandard. Most au-
thors instead call this object the “Zariski cotangent space” of X at x, and even go so far
as to define a “Zariski tangent space” by taking its dual as a κ(x)-vector space. However,
the use of the term “space” to describe a purely algebraic object should make you uneasy,
and reflects a fundamental ambiguity which is present if we discuss “vector spaces” over R

1There’s a joke about the financial sector in here somewhere.
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or C incautiously — that is, are we thinking of them algebraically, as sets endowed with
operations, or geometrically, as spaces endowed with topologies?

The stakes of such a question are low until we reach algebraic geometry, where topological
ideas need to be reformulated and algebraic ones generally need only to be reinterpreted —
we have seen already that An

C geometrically realizes the vector space Cn, but this carries some
extra points and other data, and it’s less than clear how it relates to Cn in its capacity as
a C-module. We will revisit this idea in detail soon — for now, just be warned that other
sources use different terminology, and this different terminology can muddy the conceptual
waters if employed carelessly.

To reassure ourselves that this is a cotangent module and not a tangent one, we observe
that our cotangent vectors pull back (rather than pushing forward) along maps of schemes:

Proposition/Definition 2. Let ϕ : X → Y be a map of schemes and x ∈ X a point. Then
the pullback map ϕ# : OY → ϕ∗OX induces a map ϕ# : OY,ϕ(x) → OX,x of local rings; if we
let n ⊂ OY,ϕ(x) and m ⊂ OX,x be the maximal ideals, we can see that this in turn induces a
map

ϕ∗ : n/n2 → m/m2

on Zariski cotangent modules, which we call the pullback of cotangent vectors.

This is our first serious glimpse of the notion that we can do differential geometry on
schemes — we will develop this concept in more detail later. For now, we are mainly
interested in the relationship with dimension theory:

Exercise 5. Let R be a Noetherian local ring with maximal ideal m and residue field κ =
R/m. Show that the images of elements f1, . . . , fr ∈ m under the quotient map m → m/m2

span m/m2 as a κ-vector space if and only if m = (f1, . . . , fr).
Conclude using Exercise 3 that dimR ≤ dimκ m/m2.

(It is common to prove this result using the more general Nakayama’s Lemma, which we
will discuss later. For now, it is not too difficult to show what we need directly.)

That is, the dimension of the cotangent module as a vector space is always at least the
local dimension of the scheme. This makes good sense — at the points where the scheme
“looks like a manifold”, we should expect equality by analogy to differential geometry, and
the examples in Figure 5 suggest that things should become more complicated, resulting in
extra cotangent directions, at the others. We can now formalize this distinction:

Definition 6. Let (R,m, κ) be a Noetherian local ring. (I.e., m ⊂ R is the maximal ideal
and κ = R/m is the residue field.) Then R is called regular if dimR = dimκ m/m2.

Let R be a Noetherian ring. Then R is called regular if, for every prime ideal p ⊂ R,
Rp is regular.

Let X be a locally Noetherian scheme and x ∈ X a point. Then X is said to be regular
or nonsingular at x if OX,x is regular — otherwise, we say that X is singular at x. X
itself is called regular or nonsingular if it is thus at every point, and singular otherwise.
(Equivalently: X is nonsingular if and only if it admits an affine open cover by the spectra
of regular Noetherian rings.)
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This definition is well-posed because, as one might expect, a Noetherian local ring which
is regular in the sense of local rings is also regular in the sense of rings (i.e., all of its
localizations at smaller prime ideals are regular). (The proof of this fact is actually rather
difficult, and took quite some time to be discovered — it uses homological methods beyond
the scope of this course.)

Hence we have a notion of dimension which is more topological, in terms of integral closed
subschemes, and a notion which is more differential, in terms of cotangent directions, and
we think that a scheme should “look like a manifold” exactly where these coincide, as they
would in differential geometry. At singular points, as mentioned, we have “extra directions”
— perhaps two or more components come together and we get cotangent information from
all of them, perhaps the scheme is locally integral but nevertheless folds in on itself in an
interesting way, or perhaps the presence of nonreduced structure introduces extra cotangent
directions not visible on the level of the underlying space.

Since regularity is defined only for locally Noetherian schemes, which have the property
that every closed subscheme contains a closed point, the fact that regular local rings are
regular rings implies that regularity can be checked on closed points. In particular, we can
verify:

Proposition 6. Let k be a field and n ≥ 0 an integer. Then An
k is nonsingular.

This is exactly what we should hope — after all, affine space is “the algebro-geometric
version of Euclidean space”, so our notion of “schemes that look like manifolds” should
naturally include it.

Exercise 6. Identify, with proof, all singular points of the following schemes: SpecC[x, y]/(y2−
x2), SpecC[x, y]/(y2−x2(x+1)), SpecC[x, y]/(y2−x3), SpecC[x, y, z]/(xz, yz), and SpecZ.

(It may help to draw pictures!)

As we have alluded to, there is some relationship between nonreducedness and singularity:

Exercise 7. Show that the “fat line” SpecC[x, y]/(y2) is singular at every point (including
the generic one).

More generally, we should expect by the result of Exercise 5 that the presence of nilpotents
in the local ring will automatically make a point singular, since these result in extra cotangent
directions which cannot be reflected in the dimension of the underlying space:

Exercise 8. Show that every nonsingular scheme is reduced.

In particular, (non)singularity is not a purely topological notion, unlike dimension!
Be sure not to lose track, in all of this, of the fact that our definition of singular and

nonsingular schemes is applicable only for locally Noetherian schemes — to see why this
limitation is necessary, and as a general reminder of the gruesomeness of the non-Noetherian
setting, we conclude with the following exercise:

Exercise 9. Let R = C[x, x1/2, x1/3, x1/4, . . .](x,x1/2,x1/3,x1/4,...) be the local ring of Exercise 2.
Compute the Zariski cotangent module of SpecR at its closed point.
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