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At this point we will shift gears a little and attempt to gain a geometric understanding
of a new kind of algebraic object: modules over a given ring. In the setting of algebraic
geometry, these are typically dealt with using the machinery of (quasi)coherent sheaves,
which we will discuss next week. However, as we will see, this approach to the subject is in
some sense not fully geometric — ideally, we would like to be able to realize each module
itself as a “space” of some kind, which the sheaf-theoretic machinery on its own does not do.

The constructions which allow us to accomplish this goal have been known to the algebro-
geometric community as a whole more or less since the beginning of scheme theory — in
Grothendieck’s Éléments de Géométrie Algébrique, the central object goes by the name
“fibré vectoriel”. However, for various reasons — many of them good — these objects
are not typically treated as an essential component in introductions to the subject, and
hence are not widely used in discussing and working with quasicoherent sheaves — to the
best of my knowledge, there isn’t even a particularly well-accepted way to refer to them in
English. (The term we will use, “linear fiber space” follows the convention of Gerd Fischer’s
Complex Analytic Geometry, which discusses the corresponding setup in the complex-analytic
context.)

As I say, there are good reasons to leave these objects alone. The language we will be
compelled to frame them in is unfortunately somewhat categorical, and in particular it makes
heavy use of fiber products, analogues of a topological notion which is itself not typically
completely familiar or intuitive to the first-time student of scheme theory. However, my
sense is that once one manages to ferret out the picture lurking behind the formalisms, the
payoff is worth it, and, personally speaking, I do not feel that I really understood coherent
sheaves in a satisfactory way until I learned to conceptualize them in these terms.

1 Motivation

Let R be a ring andM an R-module. We have already seen that we can interpret R geomet-
rically by identifying it (up to a reversal in the directions of maps) with the corresponding
affine scheme SpecR. We now seek to do the same thing withM — that is, we would like to
produce some kind of geometric space that captures the information algebraically encoded
in M .

We will begin by considering how M interacts with the geometry of SpecR:
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Definition 1. Let ϕ : R → S be a map of rings and M an R-module. We define the
pullback of M along ϕ (or, speaking more strictly, along the induced map of spectra) to be
the S-module S ⊗RM .

In particular, if ϕ corresponds to a map that we think of as an “inclusion” of some kind
— distinguished affine open, closed, point, etc. — we call S ⊗RM the restriction of M to
S (strictly speaking, to SpecS).

That is, if we want to realize M as a space of some kind, we should think of it as living
“over SpecR” and, as in the case of rings, we can define pullbacks (and restrictions in
particular) by way of the tensor product.

The basic constraint we should expect modules to satisfy if we are to regard them as
having some geometry compatible with that of SpecR is the same “local determinacy”
condition we’ve seen in the context of ring maps, sheaves, and so forth:

Proposition 1. Let R be a ring, M and N R-modules, and {fα}α∈A a collection of elements
of R such that (fα | α ∈ A) is the unit ideal (i.e., such that the subschemes SpecRfα give
an open cover of SpecR). For convenience, write Mα = Rfα ⊗RM and Nα = Rfα ⊗R N for
each α ∈ A, and Mαβ = Rfαfβ ⊗RM and Nαβ = Rfαfβ ⊗R N for each α, β ∈ A.

Suppose that, for each α ∈ A, we are given an Rfα-module map ϕα :Mα → Nα and that,
for all α, β ∈ A, the maps Mαβ → Nαβ induced by ϕα and ϕβ are the same. Then there is
a unique R-module map ϕ : M → N such that the induced map Mα → Nα is ϕα for each
α ∈ A.

That is, maps of R-modules are locally determined on SpecR. As a consequence, we can
see that most other aspects of module theory carry the same property:

Corollary 1. Modules themselves and individual module elements are locally determined.
Exactness of sequences of modules can also be checked locally on SpecR.

As such, the outlook for treating modules geometrically seems good so far. To start to
get a sense of what the “shape” of a module should be, we observe the result of restricting
it over each point:

Proposition 2. Let R be a ring, M an R-module, and p ⊂ R a prime, with R → κ(p) the
natural map to the residue field. Then κ(p)⊗RM is a vector space over κ(p) (and, if M is
finitely generated, this vector space will be finite-dimensional).

Example 1. Let R = C[x, y]. Set M = R⊕2 and let N be the ideal (x, y), regarded as an R-
module — note that this can be written as Re1⊕Re2

(ye1−xe2) , where e1 is the generator corresponding
to x and e2 the one corresponding to y.

For each prime p ⊂ R, we can compute κ(p) ⊗R M by recalling that tensor products
distribute over direct sums — hence we obtain the 2-dimensional vector space κ(p)⊕2 over
the residue field at each point.

Likewise, for each prime p ⊂ R, we see that κ(p) ⊗R N ∼= κ(p)e1⊕κ(p)e2
(ye1−xe2) since tensor

products preserve quotients as well (for those familiar with the terminology, this is to say
that the tensor product is right exact). The dimension of this vector space over κ(p) now
depends on our choice of p — if p = (x, y), it is isomorphic to κ(p)⊕2 ∼= C⊕2, but otherwise
the relation is nontrivial and so it is isomorphic to the the one-dimensional vector space
κ(p)⊕1.
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Thus the “algebraic fibers” of M over the points of R are vector spaces (potentially of
varying dimension), which are perhaps more readily understandable than arbitrary modules.
In particular, we have already discussed the idea that, for a field k and integer n ≥ 0, the
vector space k⊕n can be “geometrically realized” as the affine space An

k . Our goal for today
will be to generalize this idea of geometric realization from the “algebraic fibers” of M over
points of SpecR to module itself — this is where the notion of linear fiber spaces will come
into play. Of course, we will then want to generalize from the affine setting to arbitrary
schemes — to see what the analogue to a module should be in this broader context, we’ll
discuss quasicoherent sheaves next week.

2 Linear Fiber Spaces in Topology

We begin with a topic which perhaps has somewhat limited interest in its own right — the
analogues to the objects we seek to construct in the topological setting. In this context,
linear fiber spaces qua linear fiber spaces are not a particularly prominent area of past or
present research, and we will not need to draw on any of what we construct here explicitly
in the scheme-theoretic world. Rather, the present discussion is mainly for the sake of
intuition; for the moment, we can deal with the new ideas we’re interested in in the more
familiar topological context before we layer in the additional complication of working scheme-
theoretically.

Let T be a topological space. We want to think about the idea of “a space over T whose
fibers are vector spaces” (here, as in the case of schemes, a “space over T” is just another
way to say “a space with a chosen map to T”). Taken literally, this requirement is fairly
weak — for example, we could consider the map

⊔
x∈T Rn → T taking each copy of Rn to

the corresponding point of T , or we could build a space which is not the disjoint union of its
fibers which has the property that the vector space structures of nearby fibers have nothing
to do with each other. Such maps technically satisfy the hypothesis as stated, but don’t
really get at what we want to mean by it.

One typical way to solve this problem is through the idea of a vector bundle over T ,
which you may have encountered before. Essentially, the idea is to avoid these kinds of
pathologies in the relationships between the fibers from point to point by enforcing a local
triviality condition — that is, each point of T has a neighborhood U over which our map
can be expressed as the projection Rn×U → U compatibly with our vector space structures
on fibers.

This solution works quite well, and the theory of vector bundles is the basis for, e.g., much
of differential geometry. However, it suffers from an important limitation: Vector bundles
are required to have (locally) constant fiber dimension. If A and B are vector bundles over
T , for example, and we have a fiberwise-linear map A→ B commuting with the projections
to T , we might like to be able to talk about the (fiberwise) kernel of this map — but this
object will not be a vector bundle unless we also enforce that our map have (locally) constant
rank on T , and many maps of vector bundles arising naturally in practice do not satisfy this
hypothesis.

Hence we need some weaker notion stringent enough to exclude the most pathological
cases but permissive enough to allow variations in fiber dimension. We will accomplish this
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using the machinery of fiber products discussed in Lecture 3 — these allow us to make sense
of the idea of “vector space operations on fibers” in some reasonably cohesive, consistent
way.

Since the definition of a vector space involves being able to multiply by scalars, we will
start our discussion with the trivial rank-1 vector bundle R×T π−→ T . R, considered with the
classical topology, has the structure of a topological ring (i.e., a ring where all the operations
are continuous), and this naturally induces on R× T the structure of a “fiberwise ring over
T”. That is, we have the following data:

� The zero section z : T → R× T given by z(x) = (0, x).

� The unit section u : T → R× T given by u(x) = (1, x).

� The (fiberwise) addition map (R × T ) ×T (R × T )
+−→ R × T given by +(r1, r2, x) =

(r1 + r2, x). (Here we are using the fact that (R× T )×T (R× T ) ∼= R× R× T .)

� The (fiberwise) additive inverse R× T
−−→ R× T given by −(r, x) = (−r, x).

� The (fiberwise) multiplication map (R×T )×T (R×T )
·−→ R×T given by ·(r1, r2, x) =

(r1r2, x) (again using (R× T )×T (R× T ) ∼= R× R× T ).

These maps are indeed sections and fiberwise operators, respectively, because they commute
with the natural projections of all spaces involved to T (e.g., π ◦ z = idT , so that, z(x)
is a point of the fiber over x for all x ∈ T , and π ◦ + gives the natural projection of
(R × T ) ×T (R × T ) ∼= R × R × T to T , so that the sum of two points in the same fiber
remains in that fiber). Moreover, they do actually give us a ring structure on each fiber,
precisely because they satisfy the appropriate analogues to the ring axioms in the setting of
topological spaces over T . For example, we can express the idea that the unit of a ring R acts

as the identity by requiring that the composition R
1×id−−→ R × R

·−→ R be the identity map
on R; the corresponding requirement that the unit section give the point in each fiber acting

as the multiplicative identity is precisely that R× T
(u◦π)×T id−−−−−−→ (R× T )×T (R× T )

·−→ R× T
be the identity map on R× T .

A complete description of rings in these terms is given in Section 5; to adapt them for
our present purposes, we replace the natural maps to the one-point space everywhere by the
projections to T and the cartesian product × everywhere by the fiber product ×T .

Exercise 1. Write down the adapted ring axioms and verify that R× T satisfies them.

(In category-theoretic terms, all of this has been to say that R × T is a “ring in the
category of topological spaces over T”.)

It is easy to get lost in the formalisms here — as you go, make sure you understand why
the diagram you write down for each ring axiom is just expressing the requirement that the
axiom hold in every fiber.

Now that we understand our fiberwise scalars, we can get at our idea of “a space over T
whose fibers are vector spaces”:
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Definition 2. Let T be a topological space. A linear fiber space over T is a topological
space X

π−→ T over T with the structure of a “fiberwise vector space over R× T” — that is,
we have the following maps, all commuting everywhere with the natural projections to T :

� A zero section z : T → X.

� A (fiberwise) addition map X ×T X
+−→ X.

� A (fiberwise) additive inverse X
−−→ X.

� A (fiberwise) scalar multiplication map (R× T )×T X
·−→ X.

Moreover, these maps satisfy the axioms for a module over R × T given in Section 5 when
we again replace the maps to the one-point space by the projections to T and the cartesian
product × by the fiber product ×T everywhere.

A map of linear fiber spaces Φ from X to Y is a continuous map commuting with
the projections to T which is compatible with the zero section and all operations — that is,
Φ ◦ zX = zY , Φ ◦+X = +Y ◦ (Φ×T Φ), Φ ◦ −X = −Y ◦ Φ, and Φ ◦ ·X = ·Y ◦ (id×TΦ).

(More briefly: A linear fiber space over T is an (R × T )-module in the category of
topological spaces over T .)

Exercise 2. Show that every vector bundle is a linear fiber space over its base.

Observe that, since fiber products are preserved under pullbacks, we can pull back the
module axioms over each point of T to show that our operations indeed induce the structure
of a (topological) vector space on each fiber. Moreover, nothing forces these vector spaces
to have the same dimension.

Remark 1. A word of caution: One might expect from what we have said so far that every
linear fiber space with constant fiber dimension will be a vector bundle. This is not true —
consider, for example, the subspace of R3 given by the union of the z-axis with the complement
in the xy-plane of the y-axis, and take the projection to R given by the x-coordinate. Taken
with the natural operations, this is indeed a linear fiber space over R, but it is not a vector
bundle. Hence, in the topological setting, this concept does not exclude all of the pathologies,
and we need some extra hypothesis — for example, we could require that our linear fiber
spaces be locally given by closed subsets of V × T for topological vector spaces V .

However, in the scheme-theoretic setting there is already enough rigidity to exclude ex-
amples of this sort, and, since we are mainly interested in the topological situation to make
our discussion of schemes more intuitive, we will not pursue the matter further.

Remark 2. Speaking more precisely, the objects we have been discussing in this section are
real linear fiber spaces. It is, of course, possible to make the same constructions with C (or
any other topological field) in place of R.

Having established some level of intuition in the topological setting, we now turn our
attention to...

5



3 Linear Fiber Spaces over Schemes

We now make the same constructions in the setting of schemes. The analogy is fairly direct,
building on our previously-established parallels between fiber products in each context —
the main challenge will be to remain grounded and connect the geometric picture to the
affine-local algebraic implications.

Let S be a scheme. Recall that A1
S := S ×SpecZ SpecZ[t], considered together with the

natural fiber product projection A1
S → S, is the “trivial rank-1 vector bundle over S”; over

each affine open SpecR of S, this is simply the map on ring spectra induced by the natural
map R → R[t]. In particular, if we pull back over any point Spec k of S, we get the map
A1
k → Spec k induced by the natural map k → k[t]; that is, the fiber over any point is

our “geometric realization” of the one-dimensional vector space over the residue field, as
we should expect from a “rank-1 vector bundle”. We can think of the “triviality” part as
coming from the fact that this “bundle” is pulled back from SpecZ — in particular, this
means that, if there is a map S → SpecK with K a field, A1

S will simply be the product
(over K) of S with the “1-dimensional vector space” A1

K .
Now, as in the case of topological spaces, we can verify that the “trivial rank-1 vector

bundle” has a “ring structure in each fiber”:

Proposition/Definition 1. Let S be a scheme. Then we define the following maps of
schemes over S:

� The zero section z : S → A1
S given on each affine open SpecR by the R-algebra map

R → R[t] taking t to 0.

� The unit section u : S → A1
S given on each affine open SpecR by the R-algebra map

R → R[t] taking t to 1.

� The (fiberwise) addition map A1
S ×S A1

S
+−→ A1

S given on each affine open SpecR
by the R-algebra map R[t] → R[t1, t2] taking t to t1 + t2.

� The (fiberwise) additive inverse A1
S

−−→ A1
S given on each affine open SpecR by the

R-algebra map R[t] → R[t] taking t to −t.

� The (fiberwise) multiplication map A1
S ×S A1

S
·−→ A1

S given on each affine open
SpecR by the R-algebra map R[t] → R[t1, t2] taking t to t1t2.

These maps make A1
S a (fiberwise) ring over S — that is, these maps satisfy the ring

axioms described in Section 5 when we replace the maps to the one-point space by the structure
maps to S and the cartesian product × by the fiber product ×S everywhere.

Here we have implicitly used the identification A1
S ×S A1

S
∼= A2

S — that is, on the level
of affine opens, R[t1]⊗R R[t2] ∼= R[t1, t2]. The intuition you should have for our affine-local
descriptions of these maps is again in terms of ring elements as functions — in particular,
we view t ∈ k[t] as the “coordinate function” on the “one-dimensional vector space” A1

k,
and t ∈ R[t] as giving the “coordinate function” on each fiber of the “trivial rank-1 vector
bundle” over SpecR. Then, for example, we can understand the addition map A2

S → A1
S by

saying that the coordinate function on the target should be (more precisely, pull back to)
the sum of the coordinates on the source.
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Exercise 3. Explicitly write down the diagrams giving the ring axioms in this case and verify
that they commute.

Exercise 4. Let k be an algebraically closed field, so that the closed points of A1
k correspond to

elements of k and the closed points of A2
k
∼= A1

k ×k A1
k correspond to pairs of such elements.

Verify that the maps given here, when restricted to closed points, induce the usual ring
operations on k.

Exactly as in the topological setting, we can now define the notion of a “scheme over S
which is a vector space in every fiber”:

Definition 3. Let S be a scheme. A linear fiber space over S is an S-scheme X together
with maps of schemes over S:

� A zero section z : S → X.

� A (fiberwise) addition map X ×S X
+−→ X.

� A (fiberwise) additive inverse X
−−→ X.

� A (fiberwise) scalar multiplication map A1
S ×S X

·−→ X.

We require that these maps satisfy the axioms for a module over A1
S given in Section 5 when

we replace the maps to the one-point space by the structure maps to S and and the cartesian
product × by the fiber product ×S everywhere.

A map of linear fiber spaces Φ from X to Y is a map of schemes over S commuting
with the zero section and all operations, as in the topological case — that is, Φ ◦ zX = zY ,
Φ ◦+X = +Y ◦ (Φ×S Φ), Φ ◦ −X = −Y ◦ Φ, and Φ ◦ ·X = ·Y ◦ (id×SΦ).

Exercise 5. Let k be a field and n ≥ 0 an integer. Show that An
k := k[x1, . . . , xn] is a linear

fiber space over Spec k with the zero section and operations given respectively by the k-algebra
maps:

� k[x1, . . . , xn] → k taking each xi to 0.

� k[x1, . . . , xn] → k[x′1, . . . , x
′
n, x

′′
1, . . . , x

′′
n] taking each xi to x

′
i + x′′i .

� k[x1, . . . , xn] → k[x1, . . . , xn] taking each xi to −xi.

� k[x1, . . . , xn] → k[t, x1, . . . , xn] taking each xi to txi.

Verify that, if k is algebraically closed, the restrictions of these maps to closed points give
the usual vector space operations on kn.

Exercise 6. Use adaptations of the arguments of the previous exercise and the local deter-
minacy of schemes and their maps to show that, for any scheme S and integer n ≥ 0, An

S is
a linear fiber space over S.
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4 Modules as Linear Fiber Spaces

Now that we understand both the vector space structure on affine spaces and the idea of a
scheme over a given scheme whose fibers are vector spaces in the same sense, let us return to
the question of a modules, with the goal of finding such a space which in some sense realizes
a given module.

The simplest case, of course, is when our ring is a field:

Question. Let k be a field, and V a k-module (i.e., a vector space). How do we get “the
affine space geometrically realizing V ”?

If V ∼= k⊕n, of course, our answer should be An
k — but how should we get at this space

without already knowing the dimension, or in the case of an infinite-dimensional vector
space? To start toward an answer, we note that, when we are given an explicit choice of
basis, say v1, . . . , vn ∈ V , we can realize V by Spec k[v1, . . . , vn] (at least up to a dual — we
will discuss this issue in more detail shortly). The following object provides a coordinate-free
generalization of this construction:

Definition 4. Let R be a ring and M an R-module. Then the symmetric algebra of M
is the commutative ring

Sym(M) :=

⊕∞
ℓ=0M

⊗ℓ

(a⊗ b− b⊗ a | a, b ∈M)
,

where all tensor products are over R, we take M⊗0 to be R, and the multiplication operation
is given by ⊗. (The denominator above is a two-sided ideal in the noncommutative ring
given by the numerator — modding out by it is precisely enough to make the resulting ring
commutative.)

The definition may not seem intuitive at first, but in practice the symmetric algebra is
often easy to compute:

Example 2. If M ∼= Re1 ⊕ . . . ⊕ Ren is a (finite-rank) free module, then Sym(M) ∼=
R[e1, . . . , en].

Example 3. If R = C[x, y] and N = (x, y) ∼= Re1⊕Re2
(ye1−xe2) , as in Example 1, then Sym(N) ∼=

R[e1, e2]/(ye1 − xe2).

More generally, we have:

Proposition 3. Let R be a ring and M an R-module. Suppose we have a presentation
R⊕q → R⊕p → M → 0 — that is, M is generated by elements e1, . . . , ep, modulo relations
r1je1+. . .+rpjep for 1 ≤ j ≤ q. Then Sym(M) ∼= R[e1, . . . , ep]/(r1je1+. . .+rpjep | 1 ≤ j ≤ q).

The analogous result holds for infinite presentations as well.

That is, if we can write down M in terms of generators and relations, then Sym(M)
will be the R-algebra with the same generators and relations. (We could have defined the
symmetric algebra this way, but the construction we used makes it more apparent that this
is independent of the chosen presentation.)

We can now answer our question without needing an explicit choice of basis:
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Answer (up to a dual). Take Spec Sym(V ).

By analogy, we can now create the “geometric realization” for a module over an arbitrary
ring:

Definition 5. Let R be a ring and M an R-module. We define the spectrum of M to be
the SpecR-scheme Spec+M := Spec Sym(M), endowed with the structure of a linear fiber
space over SpecR by the following maps of R-algebras:

� Sym(M) → R taking each m ∈M⊗1 to 0.

� Sym(M) → Sym(M)⊗R Sym(M) taking each m ∈M⊗1 to m⊗ 1 + 1⊗m.

� Sym(M) → Sym(M) taking each m ∈M⊗1 to −m.

� Sym(M) → Sym(M)[t] taking each m ∈M⊗1 to tm.

Exercise 7. Show that, when M is a free module of finite rank n, these maps are the same
as the ones used to define the linear fiber space structure on An

R in Exercises 5 and 6.

Exercise 8. Verify that these operations make Spec+M into a linear fiber space in general.

Exercise 9. Let R be a ring and ϕ :M → N a map of R-modules. Show that the spectrum
construction functorially (and contravariantly!) induces a map Spec+N → Spec+M of
linear fiber spaces over SpecR.

Bonus: Show that every map Spec+N → Spec+M of linear fiber spaces over SpecR is
induced by some such ϕ.

Of course, for this to be a good analogue to the notion of a spectrum of a ring, it should
be possible to retrieve M from Spec+M somehow. To this end, we define:

Definition 6. Let S be a scheme and X a linear fiber space over S. A linear form on X
is a map X → A1

S of linear fiber spaces over S. We denote the set of all linear forms on
X by L(X). If Φ : X → Y is a map of linear fiber spaces over S, we call the induced map
Φ∗ : L(Y ) → L(X) given by composition with Φ pullback of linear forms.

If we are working over an affine scheme SpecR, the collection of linear forms can be
viewed as an R-module:

Proposition/Definition 2. Let S be a scheme and X a linear fiber space over S. Then

the binary operation L(X) × L(X) → L(X) sending (ϕ, ψ) to the composition X
ϕ×Sψ−−−→

A1
S ×S A1

S
+−→ A1

S makes L(X) an abelian group. For any map of linear fiber spaces over S,
moreover, pullback of linear forms respects this group structure.

If S = SpecR is affine, we can also define a multiplication map R × L(X) → L(X)
which sends (r, ϕ) to the composition of ϕ with the map A1

R → A1
R given by the R-algebra

map R[t] → R[t] taking t to rt. This makes L(X) an R-module, and pullback along any map
of linear fiber spaces is an R-module homomorphism.

As promised, we can now retrieve M :
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Exercise 10. Let R be a ring and M an R-module. Show that M ∼= L(Spec+M). (Hint:
For a given module element m ∈ M , what should the corresponding map R[t] → Sym(M)
be?)

Let N be another R-module, and ϕ : M → N a map of R-modules. Show that the map
L(Spec+M) → L(Spec+N) given by pullback along the map of linear fiber spaces defined in
Exercise 9 is identified with ϕ under these isomorphisms.

Hence, just as we can view R as “the collection of functions on SpecR”, we can interpret
M as “the collection of linear forms on Spec+M”. This brings us back to our earlier note
that, for a vector space V , Spec+ V should really be thought of as geometrically realizing
the dual of V rather than V itself — Exercise 9 shows that the map induced on spectra
by a map of vector spaces goes in the opposite of the original direction, as is the case with
duals of vector spaces, and, indeed, we have just explicitly identified V with the collection of
linear forms on SpecV in the appropriate sense. For this reason, many algebraic geometers
prefer to think that the affine space “corresponding to” V should be the spectrum Spec+ V

∨

of its dual instead. However, if we consider the situation between rings and schemes, this
begins to look like a less natural choice — to be consistent, we should want to view an
algebra-geometry correspondence as a dualizing operation, so that the algebraic object can
be interpreted as the collection of functions on the corresponding geometric space.

Indeed, this gut feeling is borne out by the result of Exercise 10, and by the absence of an
analogous way to retrieve an R-module M from Spec Sym(M∨); when we are working over
an arbitrary ring, taking the dual of a module can destroy information, so the analogue to
the correspondence V ↔ Spec+ V

∨ is not actually a correspondence in this setting. (Issues
also arise if we attempt to include infinite-dimensional vector spaces in our “correspondence”
V ↔ Spec+ V

∨.)
To conclude, we return to a definition from last week. We declared the “cotangent

module” of a scheme at a point to be the vector space m/m2 over its residue field, where m
is the maximal ideal of the local ring. As we mentioned at that point, the typical convention
is to dualize this (as an algebraic vector space) to get the definition of “the tangent space
at the point”. However, we should generally want to think of a tangent space geometrically,
rather than algebraically, and hence we should instead take this “dualization” to be exactly
the passage from algebra to geometry:

Definition 7. Let X be a scheme, x ∈ X a point, and m ⊂ OX,x the maximal ideal of
the local ring. We define the Zariski tangent space of X at x to be the affine space
Spec+(m/m

2) over the spectrum of the residue field.

Later on, when we discuss differentials, we will see how to knit these tangent spaces
together into a single linear fiber space over the scheme.

5 Appendix: Algebraic Objects via Diagrams

From algebra, we are familiar with various kinds of objects — groups, rings, modules, and
so forth — as sets endowed with some additional operations and distinguished elements,
subject to some axioms about the ways these data interact with each other. In settings like
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topology or differential geometry, where our objects and maps are closely tied to underlying
sets, we can often apply these descriptions with extra compatibility hypotheses to define the
analogous notions — for example, a Lie group is just a smooth manifold together with group
operations on the underlying set, subject to the additional hypothesis that all of the maps
involved be smooth.

In the setting of schemes, of course, this kind of approach will not be enough. Instead, we
need to express things like group axioms in forms which lend themselves well to generalization
— essentially, in category-theoretic terms. To this end, we will now give full descriptions of
some common algebraic objects in such language, as promised earlier in today’s notes.

In what follows, we will denote the one-point set by P , and, for any set S, the natural
map S → P by π. If A1 × · · · × An is a product of sets, we will denote the projection onto
the ith factor by πi; if B is another set and fi : B → Ai are maps, we will denote the induced
map B → A1 × · · · × An by f1 × · · · × fn. To save space, we will often omit composition
symbols — that is, for maps f and g, we write gf instead of g ◦ f . We will also write binary
operations using infix notation — e.g., f · g in place of the composition ·(f × g).

First recall the notion of a monoid, a set with an associative binary operation which has
an identity element:

Definition 8. A monoid consists of a setM , together with mapsM×M ·−→M and P
u−→M ,

such that the following diagrams commute:

M ×M ×M M ×M

M ×M M

π1×(π2·π3)

(π1·π2)×π3 ·

·

M M ×M

M ×M M

(uπ)×id

id×(uπ) id ·

·

A monoid is said to be commutative if the following diagram also commutes:

M ×M M

M ×M

·

π2×π1 ·

The map · is of course the binary operation, while u is the map taking the unique point of
P to the identity element. The first diagram expresses the associativity requirement, while
the second tells us that our identity element actually acts as the identity under the monoid’s
operation; we use the constant map uπ given by the composition M

π−→ P
u−→M to pick this

element out.
We now define a more familiar object, a group, by requiring that each element have an

inverse under the operation:
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Definition 9. A group is a set G together with maps G × G
·−→ G, P

e−→ G, and G
i−→ G

such that (G, ·, e) is a monoid and the following diagram commutes:

G G×G

G×G G

i×id

id×i eπ ·

·

G is called an abelian group if, moreover, the monoid (G, ·, e) is commutative.

The map i : G→ G is the one taking each element to its inverse; the diagram simply says
that multiplying an element by its inverse on either said will always result in the identity
element.

We can now combine our notions of commutative monoids and abelian groups to get
rings — remember that, for us, rings are always commutative with identity elements. Thus
we have:

Definition 10. A ring is a set R together with maps R × R
+−→ R, P

z−→ R, R
−−→ R,

R×R ·−→ R, and P
u−→ R such that (R,+, z,−) is an abelian group, (R, ·, u) is a commutative

monoid, and the following diagram commutes:

R×R×R R×R R

R×R×R×R R×R

π1×(π2+π3)

π1×π2×π1×π3

·

(π1·π2)×(π3·π4)

+

This new diagram expresses the requirement that multiplication distribute over addition
— note that this actually gives us distributivity from both sides by the commutativity
requirements.

Finally, we have the notion of a module over a given ring:

Definition 11. A module over a ring (R,+, zR,−, ·, u) is an abelian group (M,+, zM ,−)

together with a map R×M
·−→M such that the following diagrams commute:

R×M ×M R×M M

R×M ×R×M M ×M

π1×(π2+π3)

π1×π2×π1×π3

·

(π1·π2)×(π3·π4)

+

R×R×M R×M M

R×M ×R×M M ×M

(π1+π2)×π3

π1×π3×π2×π3

·

(π1·π2)×(π3·π4)

+
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R×R×M R×M

R×M M

(π1·π2)×π3

π1×(π2·π3) ·

·

M R×M

M

(uπ)×id

id
·

The new map · gives the ring action; the new diagrams express, respectively, distribution
of the action over the module’s addition, distribution over the ring’s addition, compatibility
with the ring’s multiplication, and compatibility with the identity element of the ring.

Exercise 11. Convince yourself that these definitions are the same as the ones you already
know from algebra.
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