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Last week, we discussed how to realize a module over a ring as a scheme over the ring’s
spectrum with “the fiberwise structure of a vector space” — that is, as a linear fiber space.
We also showed that the original module could be retrieved from this construction; in the
language of category theory, our results can be summarized as follows:

Proposition 1. Let R be a ring. Then the functors M 7→ SpecM and V 7→ L(V ) give an
anti-equivalence between the category of modules over R and a full subcategory of the category
of linear fiber spaces over SpecR.

This is to say that for any module M we have a corresponding linear fiber space SpecM ,
maps of modules induce maps of linear fiber spaces in the opposite direction, all maps between
linear fiber spaces constructed in this way come from module maps, and the operation of
taking linear forms retrieves our original modules and maps.

We now seek to extend this machinery to the setting of non-affine schemes. Of course,
in this context, it is not clear what the appropriate analogue to a module should be —
one approach, suggested by the above, would be to (anti-)identify “modules over S” for a
scheme S with linear fiber spaces over S which satisfy some appropriate constraint (say, being
affine-locally the spectrum of a module). This approach is feasible but nonstandard and so,
to be conversant with the existing literature, we will return to it only after discussing the
more widely-used notion of quasicoherent sheaves. To avoid getting bogged down in sheaf-
theoretic technicalities already findable in other texts, our exposition will not explore these
constructions in detail — rather, we will aim to give a quick overview of the most relevant
objects and operations and highlight some expected and unexpected behaviors.

1 Sheaves of Modules

To define an object associated to a given scheme S which is “affine-locally a module”, we
return to the definition of schemes as spaces endowed with sheaves of “functions”.

Definition 1. Let (X,OX) be a ringed space. A sheaf of OX-modules is a sheaf of abelian
groups F on X such that F(U) is an OX(U)-module for each open U ⊆ X and the module
actions commute with the restriction maps on OX and F (that is, for open V ⊆ U ⊆ X,
f ∈ OX(U), and λ ∈ F(U), ρUV (fλ) = ρUV (f)ρUV (λ)).
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A map of sheaves of OX-modules F → G is a map of sheaves of abelian groups on
X such that the constituent map F(U) → G(U) is a map of OX(U)-modules for each open
U ⊆ X.

Our result last week on the local determinacy of modules lets us turn them into sheaves:

Proposition/Definition 1. Let R be a ring and M an R-module. Then there is a unique
sheaf M̃ of OSpecR-modules such that M̃(SpecRf ) := Rf ⊗R M for all f ∈ R and the
restriction maps between these distinguished affine opens are the natural ones induced by the
localizations. We call this the sheaf of OSpecR-modules corresponding to M .

Hence we can make sense of the idea of a sheaf ofOX-modules which is “locally a module”:

Definition 2. Let X be a scheme and F a sheaf of OX-modules. F is said to be quasi-
coherent if, for every affine open SpecR ⊆ X, there exists some R-module M such that
F|SpecR ∼= M̃ . (Equivalently: if this is true for every SpecR in some affine open cover of
X.)

If X is a locally Noetherian scheme, we say that F is coherent if it is quasicoherent and
the modules M mentioned above can moreover be taken to be finitely generated (and hence,
by Noetherianity, finitely presented).

(In the non-Noetherian setting, there is a notion of coherence distinct from the finite
generation or finite presentation hypotheses, but we will ignore it, at least for the time
being, to keep things simple.)

Example 1. Let X be a scheme and n ≥ 0 an integer. Then O⊕n
X , the free sheaf of rank

n on X, is quasicoherent (indeed, if X is locally Noetherian, coherent); on each affine open

SpecR, we have O⊕n
X |SpecR ∼= R̃⊕n.

More generally, we can carry out many of our typical module operations affine-locally:

Proposition/Definition 2. Let X be a scheme and F and G be quasicoherent sheaves on
X, with ϕ : F → G a map of sheaves of OX-modules. Then there exist unique quasicoherent
sheaves F ⊕G, F ⊗OX

G, kerϕ, and cokerϕ of OX-modules which are given affine-locally by
taking the corresponding operations of modules in a consistent fashion. (That is, if SpecR ⊆
X is an affine open such that F|SpecR ∼= M̃ , G|SpecR ∼= Ñ , and ϕ|SpecR is induced by ψ :

M → N , these sheaves are given by M̃ ⊕N , M̃ ⊗R N , k̃erψ, and c̃okerψ respectively,
and the isomorphisms between different module representations induced by overlaps of affine
patches respect these identifications.)

These objects possess the expected universal properties corresponding to the ones which
hold for the corresponding module operations. As a consequence of the kernel and cokernel
definitions, we can see moreover that exactness of sequences of quasicoherent sheaves can be
defined and checked affine-locally.

Remark 1. For those more familiar with the theory of sheaves, these definitions are indeed
the same as the ones in the general setting of sheaves of OX-modules; that is, we take the
corresponding module operations over every open set and use an operation called “sheafi-
fication” to remove any failures of local determinacy which result from this. In particular,
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quasicoherent sheaves inherit the structure of an abelian category from the category of sheaves
of OX-modules.

The necessity of sheafification means that the things which are true affine-locally need not
be true over every open set — for example, (coker(F → G))(U) ̸∼= coker(F(U) → G(U))
in general if U is a non-affine open set. Hence, although the main takeaway of our present
discussion should be that most operations on quasicoherent sheaves do exactly what we expect
on affine opens and so do not require us to worry too much about sheaf-theoretic subtleties
when we work affine-locally, we can see that more caution is required as soon as we want to
say anything about a non-affine open set.

Standard facts about sheaves now allow us to retrieve a useful result about the exactness
of sequences of modules:

Proposition 2. Let R be a ring and A → B → C maps of R-modules. Then this sequence
is exact if and only if, for every prime p ⊂ R, the induced sequence Ap → Bp → Cp is exact.

This is in keeping with our general philosophy that local rings should reflect behavior in
sufficiently small open neighborhoods around the corresponding points.

One might expect from Proposition/Definition 2 that every module operation will be
affine-locally well-behaved for quasicoherent sheaves; however, this is not the case. For
example, there is not in general a quasicoherent sheaf which affine-locally realizes the module
of homomorphisms between the modules defining two quasicoherent sheaves. However, this
does exist in nice cases:

Proposition/Definition 3. Let X be a locally Noetherian scheme, F a coherent sheaf on X,
and G a quasicoherent sheaf on X. Then there is a unique quasicoherent sheaf HomOX

(F ,G)
on X such that, for affine opens SpecR ⊆ X with F|SpecR ∼= M̃ and G|SpecR ∼= Ñ , we have
HomOX

(F ,G)|SpecR ∼= H̃ for H = HomR(M,N) in a consistent fashion. (I.e., if we also have

SpecR′ ⊆ X with F|SpecR′ ∼= M̃ ′ and G|SpecR′ ∼= Ñ ′, f ∈ R, and f ′ ∈ R′ such that SpecRf ⊆
X and SpecR′

f ′ ⊆ X agree, the isomorphism HomRf
(Mf , Nf ) ∼= (HomOX

(F ,G))(SpecRf ) ∼=
HomR′

f ′
(M ′

f ′ , N ′
f ′) is the one induced under Hom by the corresponding isomorphisms Rf

∼=
R′

f ′, Mf
∼= F(SpecRf ) ∼= M ′

f ′, and Nf
∼= G(SpecRf ) ∼= N ′

f ′.)
If G is coherent as well, then HomOX

(F ,G) is coherent; hence, in particular, the duals
of coherent sheaves on a locally Noetherian scheme are coherent. (On the other hand, duals
of quasicoherent sheaves will be defined as sheaves of OX-modules but not necessarily as
quasicoherent sheaves.)

As those familiar with sheaf theory may expect, this HomOX
(F ,G) is indeed the usual

sheaf of OX-module homomorphisms — that is, (HomOX
(F ,G))(U) := HomOU

(F|U ,G|U) is
the set of maps of sheaves of OU -modules from the restriction of F to the restriction of G.

We conclude by giving an explicit example of a sheaf of modules which is not quasico-
herent:

Example 2. Let X = SpecC[x](x), so that the underlying topological space of X is the
Sierpinski space (two points, one open and one closed). Then the sheaf F on X given by
F(X) := 0, F(SpecC(x)) := C(x), and F(∅) := 0, with the natural restriction maps and
module structures, is not quasicoherent.
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2 Moving Sheaves Along Maps

So far, we have explored various constructions dealing with quasicoherent sheaves on a given
scheme; now we will start to explore how these objects interact with maps between schemes.
As usual, we have a well-defined pullback map essentially coming from tensor product —
note that this agrees with our prior definition of the “pullback of a module”:

Proposition/Definition 4. Let ϕ : X → Y be a map of schemes and G a quasicoherent
sheaf on Y . Then there is a unique quasicoherent sheaf ϕ∗G on X, called the pullback
of G along ϕ, which is affine-locally given by pullbacks of modules along ring maps in a
consistent fashion. (That is, if we have affine opens SpecR ⊆ Y and SpecS ⊆ ϕ−1(SpecR)

with G|SpecR ∼= M̃ , then (ϕ∗G)|SpecS ∼= ˜S ⊗R M , and the isomorphisms between module
representations induced by overlaps of affine patches respect these identifications.)

If X and Y are locally Noetherian and G is coherent, then ϕ∗G is as well.

Observe that, in the case where ϕ is an open inclusion, this pullback agrees with the
usual restriction of sheaves.

For the sake of appearances, we give the actual construction of the pullback:

Remark 2. The pullback sheaf can be defined explicitly using the sheaf-theoretic machinery
by ϕ∗G := ϕ−1G ⊗ϕ−1OY

OX , where ϕ
−1 denotes the topological pullback of sheaves given by

(ϕ−1F)(U) := lim−→
ϕ−1(V )⊇U

F(V ) and we use the tensor product of sheaves of ϕ−1OY -modules.

In particular, our notion of pullback differs from the usual topological one in that it is not
in general left exact; however, by the right-exactness of tensor products, it does remain right
exact.

If you are unfamiliar with or don’t remember the details of the topological pullback of
sheaves, don’t worry too much about this remark — your intuition should mainly be founded
on the idea of pullback as being affine-locally given by tensor products. The right-exactness
result, however, is worth remembering, so we give it separately:

Proposition 3. Let ϕ : X → Y be a map of schemes and 0 → A → B → C → 0 a short
exact sequence of quasicoherent sheaves on Y . Then ϕ∗A → ϕ∗B → ϕ∗C → 0 is exact.

As alluded to, this follows immediately from the fact that exactness of sequences of qua-
sicoherent sheaves can be checked affine-locally and the right-exactness of tensor products.

Having defined the pullback and explored some of its properties, we are now interested in
“going the other direction” — that is, in starting with a quasicoherent sheaf on the domain
of a map of schemes and somehow inducing a corresponding quasicoherent sheaf on the
codomain. We have already seen a way to do this, modulo the quasicoherence hypothesis, via
the pushforward sheaf introduced in Lecture 2; it remains to ask whether this is quasicoherent.
In general, the answer turns out to be no, but there is a nice class of maps for which this
difficulty does not occur:

Definition 3. Let ϕ : X → Y be a map of schemes. We say that ϕ is quasicompact
if every affine open subset of Y has quasicompact preimage under ϕ and quasiseparated
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if, for every affine open subset V of Y , ϕ−1(V ) has the property that finite intersections of
quasicompact open subsets are quasicompact. For brevity, we say that ϕ is qcqs if it is both
quasicompact and quasiseparated.

In the Noetherian setting, every map has these properties:

Proposition 4. Let ϕ : X → Y be a map of schemes and suppose that X is Noetherian.
Then ϕ is qcqs.

Hence, in practice, we do not often need to worry about verifying qcqs hypotheses.
As mentioned, qcqs maps preserve quasicoherence under pushforward:

Proposition 5. Let ϕ : X → Y a qcqs map of schemes and F a quasicoherent sheaf on X.
Then ϕ∗F is quasicoherent as well.

As we might expect from the necessity of the qcqs hypothesis, the pushforward sheaf is
not as cleanly describable in algebraic terms as the pullback. However, in the special case
where X = SpecS and Y = SpecR for rings R and S, so that F ∼= M̃ for some S-module
M , we can see that ϕ∗F will also be M̃ , where M is now considered as an R-module via the
ring map R → S corresponding to ϕ. That is, in the affine case, pushforward corresponds
to the so-called restriction of scalars from S to R.

More generally, we can see that the pushforward of a quasicoherent sheaf to an affine
scheme is given by taking global sections:

Proposition 6. Let ϕ : X → Y a qcqs map of schemes and F a quasicoherent sheaf on X.

Suppose that Y = SpecR is affine. Then ϕ∗F ∼= F̃(X), where F(X) is considered as an
R-module using the “pullback of functions” map ϕ# as usual.

This follows immediately from the definitions and the quasicoherence of the pushforward,
but is nevertheless worth noting separately.

We conclude by relating the pullback and pushforward:

Proposition 7. Let ϕ : X → Y be a qcqs map of schemes, F a quasicoherent sheaf on X,
and G a quasicoherent sheaf on Y . Then there is a natural identification HomOX

(ϕ∗G,F) ∼=
HomOY

(G, ϕ∗F).

(Technically, what we mean here by “natural” is that there is a natural isomorphism of
bifunctors HomOX

(ϕ∗−,−) ∼= HomOY
(−, ϕ∗−); this is to say that ϕ∗ and ϕ∗ are a pair of

adjoint functors between the categories of quasicoherent sheaves on X and Y .)

3 Sheaves of Algebras and Relative Spectra

The notion of a quasicoherent sheaf of modules provides a convenient intermediate step
between treating modules as fully algebraic objects and treating them as fully geometric
ones — it allows us to pass to the geometric perspective on the ring in question (and hence
generalize from rings to schemes) while still treating the module itself in some sense as an
algebraic object.
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We will now give the equivalent construction for algebras, rather than modules. In this
case, the way to create a fully geometric realization over an affine base is more obvious —
if R is a ring and A an R-algebra, we can consider the map R → A defining the algebra
structure and take the corresponding map SpecA→ SpecR of spectra. To create a “partially
geometric” perspective analogous to quasicoherent sheaves of modules, we define:

Definition 4. Let (X,OX) be a ringed space. A sheaf of OX-algebras is a sheaf of rings
A on X together with a map OX → A of sheaves of rings on X. A map of sheaves of OX-
algebras A → B is a map of sheaves of rings on X such that the composition OX → A → B
agrees with the map OX → B.

If (X,OX) is moreover a scheme, then we say that A is quasicoherent (or, more rarely,
coherent) if it is thus as a sheaf of OX-modules.

It follows from the definition that a quasicoherent sheaf of algebras is given over each
affine open SpecR by the sheaf Ã (now endowed with the additional structure of a sheaf
of algebras in the obvious way) for some R-algebra A. We can then create a geometric
realization of a given quasicoherent sheaf of algebras by patching together the corresponding
maps of ring spectra:

Definition 5. Let X be a scheme and A a quasicoherent sheaf of OX-algebras. Then the
relative spectrum of A is defined to be the unique scheme SpecA over X such that
SpecA×X SpecR ∼= Spec(A(SpecR)) as SpecR-schemes for every affine open SpecR ⊆ X
and these identifications are compatible with A (that is, for SpecS ⊆ SpecR ⊆ X, the com-
position Spec(A(SpecS)) ∼= SpecA ×X SpecS ↪→ SpecA ×X SpecR ∼= Spec(A(SpecR)) is
precisely the map induced by the restriction A(SpecR) → A(SpecS)).

To understand this construction, it may be useful to note that not every scheme over X
can arise in this way — in particular, we have the following characterization:

Proposition/Definition 5. A map ϕ : Y → X of schemes is called affine if either of the
following equivalent conditions holds:

1. ϕ is the structure map SpecA → X for some quasicoherent sheaf of OX-algebras A.

2. For each open affine SpecR ⊆ X, the preimage ϕ−1(SpecR) is an affine open sub-
scheme of Y .

That is, an affine map is one which is given by algebras affine-locally on the target. We
can retrieve the sheaf of algebras corresponding to a given affine map by noting the following:

Proposition 8. Let ϕ : Y → X be an affine map of schemes. Then ϕ is qcqs, so that ϕ∗OY

is a quasicoherent sheaf of OX-algebras, and ϕ can be naturally identified with the structure
map Specϕ∗OY → X.

Being able to pass between affine maps and the corresponding sheaves will be useful in
a number of situations going forward, including the construction of the linear fiber space
associated to a quasicoherent sheaf. For now, we will apply this machinery to get a fresh
look at closed inclusions. In Lecture 3, we defined a closed inclusion of schemes to be a map
given affine-locally on the target by the quotient by some ideal. Now, using quasicoherent
sheaves, we can patch these ideals together into a single object:
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Definition 6. Let X be a scheme. A quasicoherent sheaf of ideals (or, more simply,
ideal sheaf) on X is a quasicoherent sheaf I on X together with an inclusion I ↪→ OX of
sheaves of OX-modules.

That is, just as an ideal of a ring R is simply an R-submodule of R, we take an “ideal”
of the structure sheaf to be a sheaf of submodules. Note that, since the exactness of 0 →
I → OX can be checked affine-locally, an ideal sheaf I will be given on each affine open
SpecR by Ĩ for some ideal I of R. Hence ideal sheaves are a generalization of ideals from
the affine case to arbitrary schemes. The relative spectrum construction lets us define the
closed subscheme which is the “vanishing” of a given ideal sheaf:

Definition 7. Let X be a scheme and I an ideal sheaf on X. Then the closed subscheme
cut out by I, sometimes called the vanishing (locus) of I and variously denoted by V (I)
or Z(I), is defined to be the scheme over X given by Spec(OX/I).

It is not difficult to check that this is a closed inclusion and that every closed inclusion
arises this way:

Proposition 9. Let X be a scheme. Then every closed inclusion into X is an affine map, and
indeed there is a bijective correspondence between ideal sheaves on X and closed subschemes
of X given by the maps I 7→ V (I) and (i : Y ↪→ X) 7→ ker(OX → i∗OY ).

Describing our closed subschemes using ideal sheaves allows us to perform algebraic
manipulations more easily. For example, we can now easily define a notion of the union of
two closed subschemes — it has of course always been possible to see what this should be
on the level of subsets, but now we can get the scheme structure as well:

Definition 8. Let X be a scheme and Y1 and Y2 be closed subschemes of X. Then the union
of Y1 and Y2 in X is the closed subscheme Y1 ∪ Y2 of X cut out by the ideal sheaf I1 ∩ I2 on
X, where I1 is the ideal sheaf cutting out Y1 and I2 the one cutting out Y2.

Affine-locally, as we might expect, this is given by the intersection of ideals.
We conclude by applying this machinery to a non-affine example from Lecture 2:

Example 3. Let P1
C be the projective line over C, given by gluing SpecC[x] to SpecC[y]

along the identification SpecC[x]x ∼= SpecC[y]y induced by the map of C-algebras taking y
to x−1.

Recalling that closed points of A1
C correspond to values in C, we can see that the inclusion

of the point p given by x = 2 into SpecC[x] can be composed with the inclusion SpecC[x] ↪→
P1
C to give a closed point of P1

C. To find the corresponding ideal sheaf I, observe that p is cut

out in SpecC[x] by the ideal (x− 2); hence we have I|SpecC[x] ∼= ˜(x− 2).
On the other hand, since p ∈ SpecC[x]x, we can see that it is also a closed point of

SpecC[y]y and hence of SpecC[y], given by the coordinate y = 1
2
. As such, I|SpecC[y] ∼=

˜(y − 1
2
). These restrictions patch together along the gluing used to define OX to give our

ideal sheaf I on P1
C in full.

For example, we can now compute the module I(P1
C) of global sections. These will be

given by pairs of elements (f, g) such that f ∈ (x − 2) ⊂ C[x], g ∈ (y − 1
2
) ⊂ C[y], and
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the image of f in C[x]x is identified with the image of g in C[y]y under our isomorphism.
Writing f(x) = a(x − 2)(x − r1) · · · (x − rn) for a, r1, . . . , rn ∈ C, we can then see that
g(y) = a(y−1 − 2)(y−1 − r1) · · · (y−1 − rn) = a

yr+1 (1 − 2y)(1 − r1y) · · · (1 − rny). However,

since g ∈ C[y], not just C[y]y, and n + 1 ≥ 1, it then follows that we must have a = 0 to
avoid a nontrivial denominator. As such, we can see that in fact I(P1

C) = 0.

Exercise 1. Let J be the ideal sheaf cutting out the closed point q given by y = 0 in P1
C

(under the description of P1
C by affine patches used in the previous example). Compute

J (SpecC[x]), J (SpecC[y]), and J (P1
C).

Compute each of the corresponding modules of sections for the ideal sheaf cutting out the
union p ∪ q, where p is as in the previous example.

8


	Sheaves of Modules
	Moving Sheaves Along Maps
	Sheaves of Algebras and Relative Spectra

