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Last lecture, we introduced the notion of a quasicoherent sheaf on a scheme — that is,
a sheaf which is “affine-locally a module” (or, in the case of sheaves of algebras, “affine-
locally an algebra”). Such objects are partially geometric, in that they are defined with
respect to the topology of the schemes they live on, and partially algebraic, in that the
local module/algebra structures are not themselves expressed in any particularly geometric
fashion.

In the case of sheaves of algebras, we saw that we could create a corresponding purely
geometric object — a quasicoherent algebra sheaf is given over each affine open by an algebra,
which is to say a ring map, and to produce a global object we simply glued the corresponding
maps of ring spectra together to produce a single map of schemes, the domain of which we
called the relative spectrum of the sheaf. We will now do the same for sheaves of modules
— we have already seen how to realize a module over a ring as a linear fiber space, so it
remains to create a global object by patching these together.

1 Quasicoherent Sheaves as Linear Fiber Spaces

To begin, we generalize our notion of a symmetric algebra from modules to sheaves:

Definition 1. Let X be a scheme and F a quasicoherent sheaf of OX-modules. The quasi-
coherent algebra sheaf of F is the quasicoherent sheaf of OX-algebras defined by

Sym(F) :=

⊕∞
ℓ=0 F⊗ℓ

(a⊗ b− b⊗ a | a, b sections of F)
,

where the tensor products are tensor products of sheaves of OX-modules, we take O⊗0
X to be

OX , and the multiplication operation is given by ⊗. (The denominator should be understood
as a sheaf of two-sided ideals of the sheaf of noncommutative rings

⊕∞
ℓ=0F⊗ℓ.)

Affine-locally, this exactly agrees with our previous definition:

Proposition 1. Let R be a ring and M an R-module. Then Sym(M̃) = ˜Sym(M).

*First draft of the TeX source provided by Márton Beke.
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We are now ready to formulate our geometric realization for quasicoherent sheaves:

Definition 2. Let X be a scheme and F a quasicoherent sheaf of OX-modules. Then the
relative spectrum of F is Spec+F := Spec SymF , endowed with the structure of a linear
fiber space over X by affine-locally using the fiberwise vector space operations we defined in
the module case.

As before, we can see that a map of quasicoherent sheaves functorially induces a map of
spectra in the opposite direction.

At this point it is worth pausing to get a sense of the big picture. We’ve defined two
notions of a “relative spectrum”, one for sheaves of algebras and one for sheaves of modules.
In the algebra case, we have:{

algebra
↑

ring

} {
quasicoherent algebra sheaf

/
scheme

} {
scheme

↓
scheme

}
∼

Spec

Spec

That is, we start with a purely algebraic notion, that of an algebra over a ring. By taking
the spectrum of the base ring and the quasicoherent algebra sheaf corresponding to the
algebra, we can view this as an instance of a more general concept, that of a quasicoherent
sheaf of algebras over scheme — that is, we have expanded our perspective by taking a
geometric view of the base ring, while still tracking the structure of the algebra itself in
mostly algebraic terms. By taking the relative spectrum of such a sheaf of algebras, we can
again view this as an instance of a more general concept, that of a map of schemes; this also
completes the passage from algebra to geometry.

For modules, the picture is similar:{
module

/
ring

} {
quasicoherent module sheaf

/
scheme

} {
linear fiber space

↓
scheme

}
∼

Spec

Spec+

Again, we start with the algebraic notion of a module over a ring, and generalize this
to the setting of sheaves over schemes by reinterpreting the base ring geometrically, while
leaving the module structure encoded in algebra. With our new definition of the relative
spectrum of a sheaf of modules, we can again take the final step to the purely geometric
setting — again, this also gives a generalization of the sheaf-theoretic notion, since not every
linear fiber space arises from a quasicoherent sheaf.

Remark 1. Just as every algebra can be regarded as a module by forgetting the ring structure,
every quasicoherent sheaf of algebras can be viewed as a sheaf of modules. However, our two
notions of relative spectra do not coincide in this way — the relative spectrum of a sheaf
of algebras A, just like the spectrum of a ring, depends on the multiplicative structure, and
hence SpecA and Spec+A are not the same.

As an example, let R = C and A = C[x]; then Spec(Ã) is simply A1
C, but Spec+(Ã) =

Spec Sym(Ã) = C[e0, e1, e2, . . .] since C[x] ∼=
⊕∞

n=0Cen as C-modules.

As in the case of modules, we can retrieve a quasicoherent sheaf from the corresponding
linear fiber space using the notion of a linear form:
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Definition 3. Let X be a scheme and V a linear fiber space over X. Then the sheaf of
linear forms on V is the sheaf L(V ) of OX-modules defined by L(V )(U) := L(V |U) for
open subschemes U ⊆ X, with the addition and multiplication by sections of OX defined as
in Lecture 6.

For a map Φ : V → W of linear fiber spaces, we also define the corresponding pullback
map of sheaves of OX-modules Φ∗ : L(W ) → L(V ) by composition as before.

Here V |U denotes the restriction V ×X U , which naturally carries the structure of a linear
fiber space over U . Note that, despite the fact that its sections are linear forms on V , L(V )
is itself a sheaf on X, not V .

As in the module case, the pullbacks are (contravariantly) functorial. Now, as expected,
we find that the sheaf of linear forms on a spectrum retrieves the original sheaf of modules:

Proposition 2. Let X be a scheme and F a quasicoherent sheaf of OX-modules. Then
L(Spec+F) is quasicoherent and, indeed, naturally isomorphic to F .

Moreover, Spec+(−) and L(−) together define an anti-equivalence of abelian categories
between the category of quasicoherent sheaves on X and a full subcategory of the category of
linear fiber spaces over X — that is, not every linear fiber space necessarily arises as the
spectrum of a quasicoherent sheaf, but any map between those which do is induced by a map
of sheaves, and the correspondence respects kernels, cokernels, etc.

This correspondence also behaves well with respect to our various notions of pullback:

Proposition 3. Let ϕ : X ′ → X be a map of schemes and F a quasicoherent sheaf on X.
Then there is a natural isomorphism X ′ ×X Spec+(F) ∼= Spec+(ϕ

∗F) of linear fiber spaces
over X ′.

That is, our conversion back and forth between sheaves of modules and linear fiber
spaces commutes with pullback, so we can freely identify sheaves with their spectra even in
situations where it is important to work over multiple schemes.

It is important to remember that pullback is not, in general, exact. In particular, if we
have a short exact sequence

0 → A → B → C → 0

of quasicoherent sheaves on a scheme X, Proposition 2 tells us that the corresponding se-
quence

0 → Spec+ C → Spec+ B → Spec+A → 0

of linear fiber spaces over X is exact, but the fibers of this sequence over points x ∈ X need
not be exact. (Note that here “0” means the zero linear fiber space over X — i.e., the one
whose fiber over each point is the zero vector space. This is simply X itself.) That is, writing
V |x for the fiber V ×X x for each linear fiber space V , we have that the sequence

0 → Spec+ C|x → Spec+ B|x → Spec+A|x

of (possibly infinite-dimensional) affine spaces is exact, but the rightmost map is not neces-
sarily onto; equivalently, if i : x ↪→ X is the inclusion,

i∗A → i∗B → i∗C → 0

is exact, but the leftmost map may not be an inclusion of sheaves.
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Example 1. Let R = C[x, y] and X = SpecR. Then we have a short exact sequence

0 → (̃x, y) → R̃ → R̃/(x, y) → 0

of quasicoherent sheaves of OX-modules. By considering presentations of these modules, we
can see that the corresponding sequence of linear fiber spaces over X is

0 → Spec R[e]
(xe,ye)

→ SpecR[e] → Spec R[e1,e2]
(ye1−xe2)

→ 0;

we will now examine the fibers of this sequence over the closed points of X = A2
C.

Consider a closed point other than the origin, corresponding to the maximal ideal m =
(x− a, y− b) in R for a, b ∈ C not both zero. To compute the fibers of our linear fiber spaces
over this point, we compute M ⊗R R/m ∼= M/mM for each of our modules M and then take
the spectra of the results as modules over R/m ∼= C.

In the case of the middle term R of our sequence, we obtain simply R/m; for the module
R/(x, y), the result is R/((x, y)+m) = R/(1) = 0. On the other hand, for (x, y) ∼= Re1⊕Re2

(ye1−xe2)
,

we find that the result is Ce1⊕Ce2
(be1−ae2)

∼= C. Hence, in this case, the sequence of modules

0 → Ce1⊕Ce2
(be1−ae2)

e1 7→ae
e2 7→be−−−→ Ce → 0 → 0

we obtain actually is exact, and hence so is the corresponding sequence

Spec+ 0 Spec+ 0 Spec+Ce Spec+
Ce1⊕Ce2
(be1−ae2)

Spec+ 0

SpecC SpecC SpecC[e] Spec C[e1,e2]
(be1−ae2)

SpecC

A0
C A0

C A1
C A1

C A0
C

of linear fiber spaces over the point SpecC.
On the other hand, if we consider the origin, cut out by the maximal ideal m = (x, y) ⊂ R,

we can see that the sequence of R/m ∼= C-modules we obtain is

0 → Ce1 ⊕ Ce2
e1 7→0
e2 7→0−−−→ Ce

∼=−→ Ce → 0;

this is exact at both Ce-terms, but not at Ce1 ⊕Ce2. Hence we have only an exact sequence

Spec+ 0 Spec+Ce Spec+Ce Spec+(Ce1 ⊕ Ce2)

SpecC SpecC[e] SpecC[e] SpecC[e1, e2]

A0
C A1

C A1
C A2

C
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of linear fiber spaces over SpecC, where the map on the right is not onto.
That is, at the origin, our space Spec+(x, y) fails to be the fiberwise cokernel of the map

Spec+R/(x, y) → Spec+R; however, it is still the cokernel globally and even locally at the
level of stalks (i.e., restrictions of linear fiber spaces over the spectrum of the local ring R(x,y)).
Indeed, we will see shortly that the “fiberwise cokernel” we might expect — that is, a linear
fiber space which has a zero-dimensional fiber over the origin in SpecR and one-dimensional
fibers over the other closed points — does not exist, at least as the spectrum of a module.

The following special case of our correspondence between quasicoherent sheaves and linear
fiber spaces is particularly important:

Proposition/Definition 1. Let X be a scheme, n ≥ 0 an integer, and V a linear fiber
space over X. We call V a vector bundle of rank n over X if, for every point x ∈ X,
there exists an open neighborhood U ∋ x such that V |U ∼= An

U as linear fiber spaces over
U . This is true if and only if V = Spec+F for F a locally free sheaf of rank n on X
— i.e., F is a quasicoherent sheaf such that, for every point x ∈ X, there exists an open
neighborhood U ∋ x such that F|U ∼= O⊕n

U .

Hence every vector bundle is the spectrum of some locally free sheaf, and every locally
free sheaf is the sheaf of linear forms on some vector bundle. This follows essentially by
noting the equivalence of the respective local triviality conditions.

For those with a background in differential geometry, this notion of a vector bundle is
exactly as should be expected — An

U is the “trivial rank-n vector bundle over U” which
plays the role which U ×Rn would in the setting of smooth real manifolds, and so our local
triviality requirement is exactly analogous to the classical one.

Remark 2. Many algebraic geometers take the opposite convention — that is, that a vector
bundle should correspond to its sheaf of sections, rather than its sheaf of linear forms. This
differs from our correspondence by a dual.

Now, as previously mentioned, one possible motivation for developing the idea of linear
fiber spaces is that the kernels and cokernels of maps of vector bundles are not themselves
vector bundles if the maps do not have constant rank. In the locally Noetherian setting, we
can see that spectra of coherent sheaves are exactly what we need to construct these objects:

Exercise 1 (optional but not as hard as it may appear). Let X be a locally Noetherian
scheme. Show that the category of coherent sheaves on X is identified by our correspondence
with the full abelian subcategory of the category of linear fiber spaces over X generated by the
finite-rank vector bundles.

(Hint: Coherent sheaves locally admit finite presentations; use this to show that their
spectra can be realized as the kernels of maps of finite-rank vector bundles. It will then
remain to show that the spectra of coherent sheaves form a full abelian subcategory of the
category of linear fiber spaces.)

Hence we see that (the spectra of) coherent sheaves are really a quite mild generalization
of finite-rank vector bundles, allowing for the variations in fiber dimension necessary to
capture the behavior of maps of non-constant rank but introducing little else in the way of
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new behavior. However, as is always the case in the world of schemes, we have to be careful
about taking statements phrased in terms of fibers or points too literally — for instance, it
is not true that every coherent sheaf with constant fiber dimension is a vector bundle, as the
following example shows:

Example 2. Let R = C[x, y]/(y2) and let M be the ring C[x, y]/(y), considered as an R-
module. Then the fiber of Spec+M over any point of SpecR is the affine line over the residue
field, but Spec+M is not a rank-1 vector bundle, since it is not isomorphic to A1

SpecR
∼=

SpecR[e] over any open set of SpecR.

That is, not all of the “changes in fiber dimension” which obstruct the spectrum of a
coherent sheaf from being a vector bundle necessarily occur on the level of literal fibers, since
we also have to account for behavior over the infinitesimal tufts introduced by the presence
of nilpotents.

2 Nakayama’s Lemma

By the results of the previous section, we can view quasicoherent sheaves as linear fiber spaces
— that is, as generalizations of vector bundles with potentially varying fiber dimensions.
However, as alluded to in Example 1, the changes in fiber dimension from point to point
are not completely arbitrary, at least in the coherent case. The major constraint on their
behavior is encapsulated in the following fact from commutative algebra:

Theorem 1 (Nakayama’s Lemma). Let R be a ring, M a finitely-generated R-module, and
I ⊆ R an ideal contained in every maximal ideal. Then IM = M if and only if M = 0. In
particular, a collection of elements m1, . . . ,mn ∈ M generates M if and only if the images
of the elements under the quotient map M → M/IM generate M/IM .

To see what this means geometrically, note first by our usual translations between con-
tainments of ideals and containments of the corresponding closed subschemes that I being
contained in every maximal ideal is equivalent to SpecR/I containing every closed point of
SpecR. Now observe that IM = M if and only M/IM = 0, which is to say if and only if
the pullback of the sheaf M̃ to the closed subscheme SpecR/I is zero. This is exactly to say
that Spec+M restricts to the rank-zero vector bundle over SpecR/I; the assertion is then
that this implies Spec+M is the rank-zero vector bundle everywhere.

By specializing this to the case where R is a local ring and I is the maximal ideal, we
obtain the following corollary:

Corollary 1. Let X be a locally Noetherian scheme, x ∈ X a point, and F a coherent sheaf
on X. Then, if the fiber Spec+F|x is zero-dimensional, there is an open subscheme U ∋ x
such that Spec+F|U is the rank-zero vector bundle A0

U over U .

Proof. Let SpecR ∋ x be an affine open subscheme of X, and let p ⊂ R be the prime
ideal corresponding to x, with i : x ↪→ SpecR the inclusion. Then, since F is coherent,
we have F|SpecR ∼= M̃ for some finitely-generated R-module M . By hypothesis, we can
see that Spec+ M̃ |x := (Spec Sym M̃)|x ∼= Spec Sym(i∗M̃) := Spec Sym(κ(p) ⊗R M) is the
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zero-dimensional affine space A0
κ(p)

∼= Specκ(p) over the residue field, which is to say exactly

that Mp/pMp
∼= κ(p)⊗R M is the zero module over κ(p).

Hence, by applying Nakayama’s Lemma to Rp, Mp
∼= Rp ⊗R M , and the maximal ideal

pRp, we can see that Mp = 0 as well. The remainder of the proof follows our standard
argument for lifting facts about local rings to facts about open neighborhoods (see Lecture
4); we note that Rp is obtained from R, and henceMp fromM , by adjoining formal inverses to
all elements not in p, and so the fact that Mp = 0 is equivalent to the assertion that, for every
m ∈ M , there exists f ̸∈ p with fm = 0 and hence m ∈ ker(M → Mf ) ⊆ ker(M → Mp).
Since M is finitely generated, there exist elements m1, . . . ,mn ∈ M of which every element
of M is an R-linear combination; letting f1, . . . , fn ∈ R \ p be such that fimi = 0 for all
1 ≤ i ≤ n, we can see that Mf1···fn = 0. Thus SpecRf1···fn is an open neighborhood of x
on which F restricts to zero and hence Spec+ F restricts to the rank-zero vector bundle,
proving the result.

Now we turn our attention to the second statement in Theorem 1. To say that the images
of m1, . . . ,mn in M/IM generate it amounts to saying that the composition

R⊕n [m1 ··· mn]−−−−−−→ M → M/IM

is surjective, and Nakayama’s Lemma says that this implies the surjectivity of the first map

R⊕n [m1 ··· mn]−−−−−−→ M . Noting that taking spectra swaps surjections with injections, we can see
that this means the following: If Spec+ M̃ |SpecR/I embeds into a trivial rank-n vector bundle,

then Spec+ M̃ does as well. In particular, we can again specialize to the case of a local ring
and maximal ideal to prove the following:

Corollary 2. Let X be a locally Noetherian scheme, x ∈ X a point, and F a coherent sheaf
on X. Let n := dimSpec+F|x. Then there exists an open subscheme U ∋ x of X such that
Spec+F|U can be embedded as a closed linear fiber subspace of An

U over U . In particular, the
fibers of Spec+F|U have dimension at most n.

Proof. This is similar to the proof of the preceding corollary. Again let SpecR ∋ x be an
affine open subscheme of X, and let p ⊂ R be the prime ideal corresponding to x. We again
have F|SpecR ∼= M̃ for some finitely-generated R-module M by the coherence of F .

By the definition of n and the fact that the fibers of a linear fiber space are affine spaces,
we see that Spec+F|x ∼= An

κ(p); the corresponding statement on the level of modules is

κ(p)⊕n ∼= Mp/pMp. By taking the images of the standard basis elements of κ(p)⊕n under
this isomorphism and lifting them arbitrarily to elements m1, . . . ,mn ∈ Mp, we obtain a map
R⊕n

p → Mp of Rp-modules; applying Nakayama’s Lemma to Rp, Mp, p, and m1, . . . ,mn tells
us that this map is surjective.

Now note that each mi can be written as a formal fraction
m′

i

fi
for some m′

i ∈ M and

fi ∈ R \ p. Since the matrix 
f1 0 · · · 0
0 f2 · · · 0
...

...
. . .

...
0 0 · · · fn
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is invertible over Rp, we can suppose mi = m′
i for all 1 ≤ i ≤ n without altering our

surjectivity hypothesis. After this substitution has been made, our map R⊕n
p → Mp will be

the result of tensoring the corresponding map R⊕n → M of R-modules by Rp. Let K be the
cokernel of this map, so that R⊕n → M → K → 0 is an exact sequence.

Then we can see by the exactness of localization (or, if one prefers, the right-exactness
of tensor products in general) that Kp

∼= Rp ⊗R K is equal to zero by the surjectivity of the
corresponding map over the local ring. Since M is finitely-generated, K is as well, and so
we can repeat the reasoning used for the previous corollary to produce an affine patch U
containing x over which K vanishes, so that R̃⊕n|U → M̃ |U → 0 is exact. The result follows
by taking spectra.

We can rephrase this last observation in the following language:

Definition 4. Let T be a topological space and r : T → R a map of sets. We say that r is
upper semicontinuous if, for each a ∈ R, r−1([a,∞]) is a closed subset of T .

In particular, for convergent sequences xi → x in T , the upper semicontinuity of r implies
r(x) ≥ lim supi r(xi). That is, an upper semicontinuous function is one whose value “jumps
up only on closed subsets”. Our last corollary to Nakayama’s Lemma then gives:

Corollary 3 (upper semicontinuity of fiber dimension). Let X be a locally Noetherian scheme
and F a coherent sheaf on X. Then the function x 7→ dimSpec+F|x on the underlying space
of X is upper semicontinuous.

This provides the promised constraint on the point-to-point variations of fiber dimension
possible for coherent sheaves.

We conclude with a pair of exercises which illustrate the utility of generic points in
module-theoretic inquiries:

Exercise 2. Let X be a locally Noetherian integral scheme and F a coherent sheaf on X.
Let n be the dimension of the fiber of Spec+F over the generic point of X. Show that all
fibers of Spec+ F have dimension at least n and that there exists an open dense subscheme
U ⊆ X such that Spec+F|U is a (trivial) rank-n vector bundle.

As a more concrete example of this phenomenon:

Exercise 3. Let M be a complex matrix whose entries depend algebraically on a parameter
t. (E.g., take

M =

[
1 t2 t12

t3 − 47 t8 + 4 t9

]
or any other matrix with entries polynomial in t.) Let r be the rank of M as a matrix over
the field C(t). Use the result of the previous exercise to show that, for all but finitely many
a ∈ C, setting t = a in M gives a rank-r matrix over C.

(Hint: Regard M as a module map C[t]⊕q → C[t]⊕p and consider its cokernel.)
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