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In previous lectures, we’ve touched on the ideas of “first-order derivative information” and
tangent spaces to schemes at particular points. Now, using our newly-developed machinery
of quasicoherent sheaves and linear fiber spaces, we will define an object capturing all of these
tangent spaces at once, analogous to the tangent bundle of a smooth manifold — a sort of
“tangent linear fiber space” over a given scheme. In the setting of nonsingular finite-type
schemes over C, our prior knowledge of differential geometry makes it easy to see what this
should be in any individual case:

Example 1. Consider the affine plane A2
C. Then the tangent bundle should be the “trivial

rank-2 vector bundle over C” — that is, it should be A2
A2
C

∼= A4
C together with the projection

A4
C → A2

C onto the first two coordinates, corresponding to the natural inclusion C[x, y] →
C[x, y, dx, dy]. Observe here that the fiber over any closed point of A2

C — which will be cut out
by a maximal ideal of the form (x− a, x− b) for a, b ∈ C — is a plane A2

C
∼= SpecC[dx, dy];

as expected, the tangent space to 2-dimensional Euclidean space at any point is itself a plane.
Now consider the closed subscheme V (y − x2) := SpecC[x, y]/(y − x2), which gives a

parabola in our affine plane. The fiber product V (y−x2)×A2
C
A4

C = Spec[x, y, dx, dy]/(y−x2)
gives the restriction of the tangent bundle of the plane to this curve; again, the fiber over
any closed point is a plane with coordinates dx and dy. To see what the tangent bundle to
the parabola itself should be, recall from calculus that the tangent line to the curve y = x2 at
any point should have slope 2x; treating this as a line through the origin in the tangent plane
at the given point, we can then see that the equation should be dy = 2xdx in our coordinates
dx and dy.

Hence the tangent bundle to the parabola is given by SpecC[x, y, dx, dy]/(y − x2, dy −
2xdx).

Of course, this construction is all very ad-hoc, relying on our external knowledge of facts
from calculus; in this lecture and the next, we’ll try to rectify this issue by appropriately
reformulating the notion of a tangent bundle from differential geometry so that it admits a
natural scheme-theoretic analogue.

*First draft of the TeX source provided by Márton Beke.
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1 Motivation from Differential Geometry

In differential geometry, the tangent bundle is usually defined locally — that is, by con-
structing it as R2n → Rn for Rn and then gluing together along charts. As mentioned, we
want to define an analogous concept for schemes — however, this definition isn’t particularly
useful for such a purpose, since schemes don’t all admit local isomorphisms to affine space.

To find a better definition, recall first the following related concept:

Definition 1. Let X be a smooth manifold. Then a smooth vector field on X is a smooth
section of the tangent bundle projection π : TX → X — that is, a smooth map σ : X → TX
such that π ◦ σ = idX .

This is to say that a smooth vector field on X is choice of tangent vector at every point
of X such that the chosen vectors vary smoothly as we move from point to point.

In order to be able to define smooth vector fields without already knowing what a tangent
bundle is, we observe first that they act naturally on smooth functions by taking directional
derivatives:

Proposition 1. Let X be a smooth manifold, V a smooth vector field on X, U ⊆ X an
open subset, and f : U → R a smooth function. Then the function V f : U → R which gives
the directional derivative of f in the direction of V (x) at each point x ∈ U is also smooth.

If we let OX denote the sheaf of smooth real-valued functions on X, V then defines an
R-linear map V : OX → OX of sheaves by the assignment f 7→ V f . Moreover, this map
satisfies the usual product rule V (fg) = fV g + gV f for derivatives.

This action is important for our purposes because of the following fact from differential
geometry:

Proposition 2. In the setting of the prior proposition, the function taking each vector field
to its corresponding map OX → OX gives an isomorphism between the real vector space
of smooth vector fields on X and the real vector space of R-linear sheaf maps OX → OX

satisfying the product rule.

Proof. See, e.g., Proposition 8.15 of John M. Lee’s Introduction to Smooth Manifolds (al-
though a little bit of extra work with bump functions is needed to see that such maps
OX → OX are in fact determined by the corresponding maps OX(X) → OX(X) on global
sections which Lee considers).

Since we have analogues to “smooth real-valued functions” in the scheme setting in the
form of ring elements (more broadly, sections of the structure sheaf), the alternate algebraic
definition of vector fields provided by this proposition can be translated to the world of
schemes — we will then be able to retrieve the analogue of the notion of a tangent bundle
from this using the machinery we have been developing for passing back and forth between
sheaves and linear fiber spaces.

Before doing so, we note also the following fact on the behavior of vector fields with
respect to certain kinds of smooth maps:
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Proposition 3. Let Φ : X → Y be a constant-rank map of smooth manifolds (so that every
fiber of Φ) is itself a smooth manifold. Then a vector field V on X will be everywhere tangent
to the fibers if Φ if and only if, for every smooth function g : Y → R, V (g ◦ Φ) is the zero
function.

This is to say that the vectors given by V point along the fibers of Φ exactly when every
function constant along each fiber of Φ has zero derivative in the direction of V . This will
turn out to be important in the scheme-theoretic setting because of the necessity of defining
things in relative terms as we did with products of schemes.

2 Differentials and Tangent Schemes

As mentioned, it seems that it will be easiest for us to define “the (sheaf of) vector fields on
a scheme” and then reverse-engineer our analogue to the tangent bundle from this. How-
ever, our correspondence between vector bundles (or linear fiber spaces more generally) and
sheaves is contravariant, rather than covariant — that is, rather than the tangent bundle
corresponding to its sheaf of sections, the vector fields, we should think of it as corresponding
to its sheaf of linear forms, the “cotangent vector fields” or “covector fields” or “differential
forms”, which differ from vector fields by a dual.

To begin defining the objects we need, we formalize the notion of “a map satisfying the
product rule”:

Definition 2. Let ϕ : R → S be a map of rings and M an S-module. An R-linear deriva-
tion of S into M is a map d : S →M of abelian groups satisfying the following hypotheses:

� For all f, g ∈ S, d(fg) = fdg + gdf . (This is called the Leibniz rule or product
rule.)

� For all r ∈ R, dϕ(r) = 0. (Equivalently, given the Leibniz rule: d is a map of R-
modules.)

Let DerR(S,M) denote the set of all such derivations, endowed with the structure of an
S-module using the natural S-module operations on maps into M .

(In the case of sheaves of rings and modules, we make the corresponding definitions by
requiring our conditions on the map of sections over every open set.)

For a given ring map R → S, we can of course consider many different S-modules M
and, for any given M , many different R-derivations of S into M . However, it turns out that
all information about such derivations can essentially be encapsulated in a single S-module:

Definition 3. Let ϕ : R → S be a map of rings. The module of Kähler differentials of
S over R is the S-module

ΩS/R :=

⊕
f∈S Sdf

(d(fg)−fdg−gdf |f,g∈S)
+

(d(ϕ(a)f+ϕ(b)g)−ϕ(a)df−ϕ(b)dg|a,b∈R,f,g∈S)

.

The map d : S → ΩS/R given by f 7→ df is called the universal derivation of S over R.
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That is, we construct the module of differentials by considering the module freely gener-
ated by the symbols df, f ∈ S, and then modding out by precisely the relations needed to
make f 7→ df a derivation over R. Indeed, this construction makes the map d live up to the
name “universal derivation”:

Proposition 4. Let ϕ : R → S be a map of rings. Then the universal derivation of S over
R is an R-linear derivation of S into ΩS/R. Moreover, for any S-module M and R-linear
derivation dM : S → M , there exists a unique map ψ : ΩS/R → M of S-modules such that
dM = ψ ◦ d.

This universal property gives rise to a natural identification DerR(S,M) ∼= HomS(ΩS/R,M)
between R-derivations of S into M and S-module homomorphisms ΩS/R →M . (Here “nat-
ural” means that, for an S-module map M → M ′, the identifications respect the maps
DerR(S,M) → DerR(S,M

′) and HomS(ΩS/R,M) → HomS(ΩS/R,M
′) given by composition.)

In particular, we can see that DerR(S, S) ∼= HomS(ΩS/R, S) =: Ω∨
S/R; that is, if we take

the dual of our module of differentials as an S-module, we get the module of derivations of S
into itself. This is our first inkling of the idea that the Kähler differentials should be viewed
as differential forms on SpecS, since the derivations from S to itself are “vector fields”; we
will return to this later.

For now, as a prelude to taking this more geometric perspective, we want to move from
the setting of modules to that of sheaves. Of course, the thing to verify here is that the
formation of differentials commutes with localization:

Proposition 5. Let R → S be a map of rings and U ⊆ S a multiplicatively closed set.
Then ΩU−1S/R

∼= U−1S ⊗S ΩS/R. In particular, ΩSf/R
∼= Sf ⊗S ΩS/R for any f ∈ S and

ΩSp/R
∼= Sp ⊗S ΩS/R for any prime ideal p ⊂ S.

Proof sketch. Essentially, what we need to verify is that U−1S ⊗S ΩS/R already contains
an element playing the role of d(1/u) for each u ∈ U ; this can be done using the usual
quotient rule du−1 = −1u−2du, which follows by observing that 0 = d1 = d(uu−1) =
udu−1 + u−1du.

This having been established, we find that there is a well-defined sheaf on the domain of
a given map of schemes affine-locally agreeing with the Kähler differentials:

Proposition/Definition 1. Let Φ : X → Y be a map of schemes. Then there exists a
unique quasicoherent sheaf ΩX/Y of OX-modules such that, for all affine opens SpecR ⊆ Y

and SpecS ⊆ Φ−1(SpecR), ΩX/Y |SpecS ∼= Ω̃S/R and the gluings are compatible with these
identifications. (That is, the following holds: Suppose we have affine opens SpecR, SpecR′ ⊆
Y , SpecS ⊆ Φ−1(SpecR), and SpecS ′ ⊆ Φ−1(SpecR′) with elements f ∈ R, f ′ ∈ R′, g ∈ S,
and g′ ∈ S ′ such that SpecSg ⊆ Φ−1(SpecRf ), SpecS ′

g′ ⊆ SpecΦ−1(R′
f ′), SpecRf and

SpecR′
f ′ agree as open subschemes of Y , and SpecSg and SpecS ′

g′ agree as open subschemes
of X. Then the isomorphism ΩSg/Rf

∼= Sg ⊗S ΩS/R
∼= ΩX/Y (SpecSg) ∼= ΩX/Y (SpecS

′
g′)

∼=
S ′
g′ ⊗S′ ΩS′/R′ ∼= ΩS′

g′/R
′
f ′

induced by our local identifications of sheaves ΩX/Y |SpecS ∼= Ω̃S/R

and ΩX/Y |SpecS′ ∼= Ω̃S′/R′ agrees with the isomorphism ΩSg/Rf
∼= ΩS′

g′/R
′
f ′

naturally induced

by the commutative square

4



Sg S ′
g′

Rf R′
f ′

∼

∼

of ring maps.)
We call ΩX/Y the sheaf of (relative) Kähler differentials of X over Y and may also

denote it by ΩΦ. Moreover, we define the (relative, or fiberwise) tangent scheme of X
over Y to be the linear fiber space TX/Y := Spec+ΩX/Y over X (which we may also denote
TΦ).

If we are understood to be working in the context of schemes over Y (as, for example,
when Y = SpecC and we are in the setting of C-schemes), we may drop Y from the notations
and speak only of ΩX and TX .

The concept is that, just as was the case with products of schemes, it is most productive
to define tangent schemes of when working over a given base scheme Y ; in that setting, TX/Y

is “the” tangent scheme to a Y -scheme X, just as X ×Y X
′ is “the” product of Y -schemes

X and X ′. As mentioned in the definition, a very common use case is Y = SpecC or, more
generally, Y = Spec k for k a field, so that for a k-scheme X the tangent scheme TX is defined
relative to the map to the one-point space Spec k — this gives the most direct analogue to
the tangent bundle in the setting of smooth manifolds.

The sheaf of Kähler differentials, being the sheaf of linear forms on our tangent bundle
analogue, should be considered as the “sheaf of (relative) differential forms” on our scheme.
To verify that our analogy holds up, we must check that the sections of the tangent scheme
of correspond to derivations from the structure sheaf to itself; in light of Proposition 4, this
is a special case of the more general observation about quasicoherent sheaves:

Proposition 6. Let X be a scheme and F a quasicoherent sheaf of OX-modules. Then
{sections of Spec+ F → X} ∼= HomOX

(F ,OX) as OX(X)-modules.

Proof sketch (affine case). Suppose X = SpecR for some ring R, so that F = M̃ forM some
R-module. Then sections of Spec+ F → X, which are defined to be maps X → Spec+F of
schemes which yield idX when composed with the projection, can be exactly identified with
R-algebra maps SymM → R by the usual correspondence between maps of affine schemes
and maps of rings (the requirement to compose to the identity becomes the requirement that
R → SymM → R be the identity, which is precisely encapsulated by the requirement that
SymM → R be an R-algebra map).

Since SymM is generated as an R-algebra by its degree-1 part M⊗1 = M , we can see
that the R-algebra maps SymM → R are naturally in bijective correspondence with R-
module maps M → R. The collection of all such maps is HomR(M,R), which is exactly
HomOX

(F ,OX) by the correspondence between modules and quasicoherent sheaves in the
affine case.

We elide the verification that these identifications preserve the R-module structure and
the gluing arguments necessary for the proof in general. In the case we are concerned with,
this result has the following consequence when combined with Proposition 4:
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Corollary 1. Let Φ : X → Y be a map of schemes. Then the sections of TX/Y can be
canonically identified with the Φ−1OY -linear derivations OX → OX .

Affine-locally, where Φ is induced by a ring map R → S, this is just to say that the
sections of the tangent scheme are given by DerR(S, S). If Y = Spec k for k a field, we have
Φ−1OY = k (the constant sheaf which is given by k on every connected open set) and so we
can see that our “vector fields” in the sense of sections of the tangent scheme are, indeed,
simply the k-linear derivations from OX to itself, as in differential geometry.

More generally, the Φ−1OY -linearity says that our vector fields on TX/Y are “tangent to
the fibers of Φ”, as in Proposition 3; that is, TX/Y should really be thought of as giving the
fiberwise tangent scheme of X over Y . As a consequence, we should expect that tangent
schemes play well with pullback from the base. This turns out to be true:

Proposition 7. Let R → S be a map of rings, R → R′ another, and set S ′ := S ⊗R R
′.

Then ΩS′/R′ ∼= R′ ⊗R ΩS/R.
Consequently, if X → Y and Y ′ → Y are maps of schemes and we set X ′ := X ×Y Y

′,
then TX′/Y ′ ∼= TX/Y ×Y Y

′ as linear fiber spaces over X ′.

That is, we have the following diagram of pullback squares:

TX′/Y ′ TX/Y

X ′ X

Y ′ Y

In particular, taking Y ′ → Y to be the inclusion of a point y ↪→ Y , we see that, indeed,
the restriction of TX/Y over the fiber Xy of X over y is precisely the tangent scheme TXy/y

of that fiber as a κ(y)-scheme (where κ(y), as always, is the residue field of Y at y).

3 First Computations

So far, our definitions have all been rather abstract — for practical purposes, of course, we
would like to be able to actually construct the objects in question. Here we will begin to
establish some basic results letting us do so, to be continued in next week’s lecture.

Our first result tells us that the tangent scheme to affine space is as expected:

Proposition 8. Let R be a ring and n ≥ 0 an integer. Set S := R[x1, . . . , xn], considered
as an R-algebra in the usual way. Then ΩS/R

∼=
⊕n

i=1 Sdxi.
As a result, if Y is a scheme and X = An

Y , then TX/Y
∼= An

X = An
An
Y

∼= A2n
Y .

This is to say that the fiberwise tangent bundle to a trivial rank-n vector bundle is,
indeed, a trivial rank-n vector bundle over the total space, and hence a trivial rank-2n fiber
bundle over the original base space. Taking the base space to be a point, we find our analogue
to the observation that the tangent bundle of Rn is R2n in the differential-geometric setting;
for example, we have:
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Example 2. Let Y = SpecC and X = An
C = SpecC[x1, . . . , xn]. Then TX/Y

∼= An
X
∼= A2n

C =
SpecC[x1, . . . , xn, dx1, . . . , dxn].

In practice, since much of algebraic geometry is concerned with finite-type schemes over
fields, this initial computation will be enough to allow us to compute most of the tangent
schemes we care about in practice when applied together with a few standard results relating
different sheaves of Kähler differentials. To start off, we observe that maps of schemes induce
maps on tangent schemes:

Proposition/Definition 2. Let R → S → T be ring maps. Then the composition S → T
d−→

ΩT/R is an R-linear derivation of S into ΩT/R, considered as an S-module using restriction of
scalars along the map S → T . By the universal property of Kähler differentials, this factors as
the universal derivation followed by an S-module map ΩS/R → ΩT/R; by standard properties
of modules and tensor products, this corresponds to a T -module map T ⊗S ΩS/R → ΩT/R.

Hence, if X and Y are schemes over Z and Φ : X → Y is a map of Z-schemes, there is
a natural map Φ∗ΩY/Z → ΩX/Z of quasicoherent sheaves on X. The induced map

DZΦ : TX/Z → Φ∗TY/Z

of linear fiber spaces over X is called the (relative, or fiberwise) differential of Φ over
Z. (When the base scheme Z is understood, we may denote this simply by DΦ.)

This is exactly analogous to the differential-geometric setting, where a smooth map in-
duces a corresponding map from the tangent bundle of the source to the pullback of the
tangent bundle of the target. (Also as in differential geometry, we can of course compose
this with the natural fiber product projection Φ∗TY/Z → TY/Z to get a map TX/Z → TY/Z
induced by Φ.) On the level of sheaves, the map Φ∗ΩY/Z → ΩX/Z corresponds precisely to
the usual pullback of differential forms.

Example 3. Let X = A2
C and Y = A1

C, with Φ : X → Y a coordinate projection, induced
by the natural inclusion C[x] → C[x, y] of rings. Working over SpecC, we wish to compute
DΦ : TX → Φ∗TY .

This corresponds on the level of modules to the map C[x, y] ⊗C[x] ΩC[x]/C → ΩC[x,y]/C
induced by the ring maps C → C[x] → C[x, y]. By Proposition 8, ΩC[x]/C ∼= C[x]dx, so
C[x, y] ⊗C[x] ΩC[x]/C ∼= C[x, y]dx, and ΩC[x,y]/C ∼= C[x, y]dx ⊕ C[x, y]dy. Fairly clearly, our
map should then be the inclusion C[x, y]dx ↪→ C[x, y]dx⊕C[x, y]dy, if there is any justice in
the world, but let’s follow through the steps just to be sure.

The composition C[x] → C[x, y] d−→ ΩC[x,y]/C is determined by the assignment x 7→ x 7→ dx
and the fact that this map is a derivation. The C[x]-module map ΩC[x]/C → ΩC[x,y]/C, which
is to say C[x]dx→ C[x, y]dx⊕C[x, y]dy, is then given by taking the abstract differential dx ∈
ΩC[x]/C to the differential dx ∈ ΩC[x,y]/C of x under our composed map, so it is determined
by the assignment dx 7→ dx, as we expect. Of course, the corresponding map C[x, y]dx →
C[x, y]dx⊕ C[x, y]dy is then the expected one as well.

As such, the corresponding map of symmetric algebras is the natural inclusion C[x, y, dx] →
C[x, y, dx, dy], and so DΦ is the projection A4

C → A3
C onto the first three coordinates, where

both these spaces are viewed as vector bundles over X = A2
C using the projection to the first

two coordinates.
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As a more complicated example, we have:

Example 4. Let X = A2
C and Y = A1

C, with Φ : X → Y a the map induced by the C-algebra
map C[t] → C[x, y] given by t 7→ xy. Working over SpecC as in the prior example, we again
wish to compute DΦ : TX → Φ∗TY .

Here Φ∗TY is the trivial rank-1 vector bundle over X = SpecC[x, y], given by SpecC[x, y, dt],
and TX is the trivial rank-2 vector bundle, given by SpecC[x, y, dx, dy]. To determine DΦ,
we must figure out where dt goes under the map C[x, y, dt] → C[x, y, dx, dy] induced by
C[x, y]⊗C[t] ΩC[t]/C → ΩC[x,y]/C, which is to say C[x, y]dt→ C[x, y]dx⊕C[x, y]dy. As before,
this map takes dt to the image of t under the composition C[t] → C[x, y] d−→ ΩC[x,y]/C, which
is precisely d(xy) = ydx+ xdy.

In the classical setting, our Φ corresponds to the polynomial map C2 → C given by
f(x, y) = xy; we can then see that the induced pullback of differentials is as given by
our formula above, and the map on tangent bundles, being given by the Jacobian matrix[
∂f
∂x

∂f
∂y

]
=

[
y x

]
, also agrees.

As a first general computational result, we observe that the tangent spaces to fibers of
a map are given precisely by the kernel of its differential, as in the case of a constant-rank
map of smooth manifolds as considered in Proposition 3:

Proposition 9 (relative (co)tangent sequence). Let R → S → T be maps of rings. Since
d : T → ΩT/S is R-linear by virtue of the fact that it satisfies the stronger condition of S-
linearity, we obtain a map of T -modules ΩT/R → ΩT/S from the universal property of ΩT/R.
Then, recalling the map of Proposition/Definition 2, we have the following exact sequence of
T -modules:

T ⊗S ΩS/R → ΩT/R → ΩT/S → 0.

Hence, if X and Y are schemes over Z and Φ : X → Y a map of Z-schemes, we have
an exact sequence

Φ∗ΩY/Z → ΩX/Z → ΩX/Y → 0

of quasicoherent sheaves on X, and thus an exact sequence

0 → TX/Y → TX/Z
DZΦ−−−→ Φ∗TY/Z

of linear fiber spaces over X.

That is, TX/Y = TΦ is naturally identified with kerDZΦ, no matter the base scheme Z.

Example 5. In the setting of Example 3, we find by Proposition 9 that ΩC[x,y]/C[x] ∼=
C[x,y]dx⊕C[x,y]dy

C[x,y]dx
∼= C[x, y]dy. That is, the relative tangent scheme TX/Y is precisely the vertical

bundle SpecC[x, y, dy] of X over Y .

Example 6. In the setting of Example 4, Proposition 9 now tells us that

ΩC[x,y]/C[t] ∼=
C[x, y]dx⊕ C[x, y]dy

(ydx+ xdy)
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and so TX/Y = SpecC[x, y, dx, dy]/(ydx + xdy). We can use this together with our base
change result (Proposition 7) to compute tangent schemes to fibers of Φ.

Let p be the closed point in the affine line Y cut out by the equation t = 1, with inclusion
i : p ↪→ Y . Then Φ−1(p) = SpecC[x, y]/(xy− 1) is the scheme corresponding to the graph in
the xy-plane of the function y = 1

x
. By Proposition 7 and the fact that p has residue field C,

we find that TΦ−1(p) = TΦ−1(p)/p = i∗TX/Y = (SpecC[x, y, dx, dy]/(ydx+xdy)⊗C[t]C[t]/(t−1)).
This is the scheme SpecC[x, y, dx, dy]/(xy − 1, ydx + xdy) over Φ−1(p); since x is now
invertible in the corresponding ring, with inverse given by y, we have

TΦ−1(p) = Spec
C[x, y, dx, dy]

(xy − 1, dy + y
x
dx)

= Spec
C[x, y, dx, dy]

(xy − 1, dy + 1
x2dx)

.

That is, the tangent line to the graph of y = 1
x
at each point is given by dy = − 1

x2dx, which
has exactly the slope we expect from our prior calculus knowledge.

Exercise 1. In the setting of the prior example, let o be the origin in the affine line Y = A1
C,

cut out by the equation t = 0. Compute TΦ−1(o) — what are the dimensions of its fibers over
the closed points of Φ−1(o) = SpecC[x, y]/(xy)?

Exercise 2. Verify that our formal definitions agree with the ad-hoc constructions of Exam-
ple 1.
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