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So far, most of our motivation and examples have come from the study of affine space
and its subschemes — that is, of the vanishing loci of collections of polynomials on Euclidean
space and the ways we can understand their behavior through algebra. Questions about such
objects, of course, comprised many of the central concerns of classical algebraic geometry
— however, there is also another setting, called projective space, a sort of compactified
version of Euclidean space which has been of interest both historically and in contemporary
mathematics. Projective space is perhaps less immediately intuitive than Euclidean space,
but it arises naturally in mathematical formalizations of questions of visual perspective and
offers some theoretical advantages over the affine setting.

We will now build up the machinery needed for the scheme-theoretic perspective on
projective space. Perhaps unsurprisingly, our approach to this will actually be relative —
that is, we deal with maps of schemes rather than just schemes and work everywhere with
“fiberwise versions of the constructions we are interested in”.

1 Classical Motivation

We begin, as usual, by providing a sketch of the phenomena we are trying to replicate in
more traditional topological terms. Classically speaking, projective space is defined to be
the “space of lines through the origin in Euclidean space” — that is, every point corresponds
to such a line, and the topology reflects our intuitive notion of what it should mean for a
sequence (or, more generally, family indexed by a directed set) of lines to approach another.
(If you want: The topology can be induced by metrizing according to the angles between
different lines in the planes they span.) We realize this by means of a quotient:

Definition 1. Let n ≥ 0 be an integer. Then real projective n-space is

RPn :=
Rn+1 \ 0

(p ∼ q | p and q lie on the same line through the origin)

and complex projective n-space is

CPn :=
Cn+1 \ 0

(p ∼ q | p and q lie on the same (complex) line through the origin)
.

*First draft of the TeX source provided by Márton Beke.
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If p = (p0, . . . , pn) is a point in Rn+1 \ 0 or Cn+1 \ 0, we write [p0 : · · · : pn] for the
corresponding point in the quotient space RPn or CPn respectively.

As it turns out, Rn is a real manifold of real dimension n, and Cn is a complex manifold
of complex dimension n. To demonstrate the idea behind the argument for this in general,
and to illustrate our prior claim that projective space is a “compactified version of Euclidean
space”, we consider the following example:

Example 1 (RP2 as a compactification of R2). Consider R3 with coordinates x, y, and z,
and let P0 be the xy-plane, given by the equation z = 0. Then we have a closed subspace of
RP2, the space of lines through the origin in R3, consisting of those lines which lie entirely
in P0; since P0

∼= R2, this subspace is in fact a copy of RP1.
Now consider its complement RP2 \ RP1, the space of lines which are not entirely hori-

zontal. Let P1 be the plane in R3 parallel to P0 at height 1; that is, the one cut out by the
equation z = 1. Then any line through the origin in R3 which is not contained in P0 — that
is, which is not completely horizontal — will meet P1 at a unique point, and we can see that
both the map RP2\RP1 → P1 taking each line to this intersection point is a homeomorphism.
Hence RP2 \ RP1 ∼= P1

∼= R2.
Thus we can think of RP2 as “R2, compactified by adding a copy of RP1 at infinity”. To

see how this works in practice, consider a sequence of points in R2 running off to infinity,
say (xn, yn) = (n, 0). Then we have the corresponding sequence [xn : yn : 1] of points in
RP2 \ RP1 given by taking the lines from the origin in R3 through the corresponding points
in P1; as we let n → ∞, we can see that these lines (which, in this case, lie in the xz-plane,
with equations y = 0 and z = 1

n
x) get closer and closer to being horizontal. In particular,

they approach the x-axis, which corresponds to the point [1 : 0 : 0] in RP2. That is, we started
with a divergent sequence in R2 and, by identifying it with a sequence of non-horizontal lines
through the origin in R3, have been able to produce a point of the “RP1 at infinity” — that
is, a horizontal line — to which it converges.

Of course, there is nothing special about z — we can make the same sort of identification
using any of our coordinates, or indeed any linear form. This gives a cover of RP2 by open
patches homeomorphic to R2, and it is not difficult to see that the transition maps between
coordinate patches are smooth, so that real projective 2-space is a smooth 2-dimensional real
manifold.

Similar remarks apply to RPn for any n, and indeed to CPn as well — in this level of
generality, we take our P0 to be the vanishing of a single linear form on (n+ 1)-dimensional
Euclidean space, so that it has dimension n over R or C respectively.

As mentioned, working in projective space makes many algebro-geometric questions
better-behaved and easier to answer. For example, if we have two distinct lines in R2 or
C2, the common vanishing locus of their defining equations may consist of a single point,
the point of intersection between the two lines, or it may be empty, in the case where the
lines are parallel and so there is no such intersection point. However, in projective space,
this latter possibility is eliminated — that is, if we embed Euclidean 2-space in projective
2-space as described above, the closures of our chosen parallel lines will meet at a single point
at infinity, the one corresponding to the line through the origin parallel to both. Hence, in
projective 2-space, the intersection of two distinct (projective) lines will always consist of

2



exactly one point. More generally, a result called Bézout’s theorem, which we will probably
not get around to discussing in detail, guarantees that in an appropriate sense the number
of intersection points of a collection of polynomials in CPn is entirely predictable from the
polynomials’ degrees, whereas the same is not true if we work only in Cn.

2 Projective Space via Actions

As a first step toward adapting projective space to the scheme-theoretic context, we examine
the equivalence relation used to define it in more detail. We will discuss the real case; the
complex one is entirely analogous.

Recall from our discussion of topological linear fiber spaces in Lecture 6 that R is a
topological ring, and Rn+1’s structure as a topological vector space means in particular
that there is a scalar multiplication map R × Rn+1 ·−→ Rn+1. Ignoring, for the moment,
the additive structures on our spaces, we can see that this map gives a topological monoid
action, or more specifically, a topological monoid-with-zero action, of R on Rn+1; we now
review these definitions for the sake of completeness.

Definition 2. A monoid is a set M together with an associative binary operation M×M
·−→

M and element 1 ∈ M such that 1 ·m = m · 1 = m for all m ∈ M . A monoid-with-zero
is a monoid with an element 0 ∈ M such that 0 · m = m · 0 = 0 for all m ∈ M . A
group is a monoid such that, for each m ∈ M , there is an element m−1 ∈ M such that
m ·m−1 = m−1 ·m = 1.

A monoid, monoid-with-zero, or group is said to be commutative, or abelian, if m ·
m′ = m′ ·m for all m ∈ M .

Definition 3. Let (M, ·, 1) be a monoid and X a set. A (left) monoid action of M on X

is a map M ×X
·−→ X such that m · (m′ ·x) = (m ·m′) ·x and 1 ·x = x for all m,m′ ∈ M and

x ∈ X. If M is a monoid-with-zero, this is called a monoid-with-zero action if moreover
there is an element 0 ∈ X such that 0 · x = 0 for all x ∈ X. On the other hand, if M is a
group, any monoid action is called a group action.

As in Lecture 6, our method for formulating the appropriate topological versions (and,
eventually, scheme-theoretic versions) of these objects will be to first rephrase them in terms
of maps of sets and commutative diagrams, then replace these by corresponding maps and
diagrams in the category of topological spaces — i.e., require all maps involved to be con-
tinuous. We have done this already in Lecture 6 for monoids, groups, and commutativity —
for the remaining definitions, see Section 5.

Now, as mentioned, our scaling action of R on Rn+1 is a monoid-with-zero action, and
we can see that this restricts to a group action R∗ × (Rn+1 \ 0) ·−→ Rn+1 \ 0. That is, if we
limit ourselves to scaling by nonzero values, the result is still a continuous monoid action
and hence, since R∗ := R \ 0 is a group, a group action — moreover, the origin is its own

orbit, so the restriction R∗ × (Rn+1 \ 0) ·−→ Rn+1 has image Rn+1 \ 0.
The orbits of this group action on Rn+1 \ 0 are precisely the equivalence classes of the

relation used to define the quotient in Definition 1 — that is, the (punctured) lines through
the origin in Rn+1 \ 0. Thus the projective space RPn is precisely the quotient of Rn+1 \ 0
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by the usual R∗-action, and, for (p0, . . . , pn), (q0, . . . , qn) ∈ Rn+1 \ 0, we have [p0 : · · · : pn] =
[q0 : · · · : qn] if and only if there exists λ ∈ R∗ with pi = λqi for all 0 ≤ i ≤ n.

Taking this perspective allows us to extend our notion of projective space to vector
bundles, and even (appropriate subsets of) arbitrary linear fiber spaces:

Definition 4. Let π : E → B be a real linear fiber space in the topological setting (for
example, a vector bundle), with z : B → E the zero section. Then, by definition, the fiberwise

scaling action of R × B on E (given by a map (R × B) ×B E
·−→ E) is a monoid-with-zero

action in the setting of topological spaces over B — that is, a map that satisfies the definitions
of Section 5 with the one-point space P replaced by B, all Cartesian products replaced by the
fiber product ×B over B, and all topological spaces and maps replaced by spaces and maps
over B. This restricts to a fiberwise group action (R∗ × B) ×B (E \ z(B)) → E \ z(B) on
the complement of the zero section in E.

The projectivization of E is the topological space P(E) over B given by taking the
fiberwise quotient of E \z(B) by this group action. If X ⊆ E is a subspace which is invariant

under the scaling action — that is, (R×B)×B E
·−→ E restricts to a fiberwise monoid-with-

zero action (R×B)×B X
·−→ X — then we can define the projectivization of X similarly

as the quotient P(X) of X \ z(B) by the induced fiberwise group action of R∗ × B; this is
exactly the subspace of P(E) whose points correspond to lines lying in X.

That is, just as every fiber of π : E → B is a vector space, every fiber of the structure map
P(E) → B is a projective space, the space of lines through the origin in the corresponding
fiber of π. Our definition of projectivization for subsets of E says essentially that, if we have
a subset which is fiberwise a union of lines through the origin, we can consider the collection
of all points corresponding to those lines as a subspace of P(E). (In particular, through the
case where B is the one-point space, this definition encompasses projectivizations of unions
of lines through the origin in Euclidean space.)

As mentioned, everything discussed in this section applies, mutatis mutandis, to complex
projective space and projectivizations of complex vector bundles and linear fiber spaces.

3 N-Graded Rings and Conical Fiber Spaces

We now seek to replicate our construction in the world of schemes. If k is a field and n ≥ 0
is an integer, recall from our realization of An+1

k as a linear fiber space over Spec k in Lecture
6 that the scaling action is given by the map A1

k ×k An+1
k → An+1

k corresponding to the
k-algebra map k[x0, . . . , xn] → k[x0, . . . , xn, t] taking xi to txi for each 0 ≤ i ≤ n. More
generally, if R is a ring, the fiberwise scaling action on An+1

R , the trivial rank-(n+ 1) vector
bundle over SpecR, is given by the map A1

R×RAn+1
R → An+1

R corresponding to the R-algebra
map R[x0, . . . , xn] → R[x0, . . . , xn, t] taking xi to txi for each 0 ≤ i ≤ n; if X is a scheme, the
scaling action on any vector bundle of rank (n+ 1) will by definition be given affine-locally
by the preceding map under the trivializations.

Our goal will be to do scheme-theoretically what we did in the classical setting — that is,
puncture An+1

k by throwing away the origin (or An+1
R by throwing away the zero section) and

take a “quotient by the scaling action”, whatever that means in this context. In doing so,
we will actually work with a more general class of objects which includes, for example, the
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scheme-theoretic analogues to the “unions of lines through the origin in a linear fiber space”
discussed above, since we will need the full generality and doing so doesn’t really change the
algebraic side of the picture that much — however, be sure to keep these basic examples in
mind as you follow along and try to build out your geometric intuition for the things we’re
doing.

To begin, we note that the information of a monoid action by A1 of the sort discussed
above is traditionally encapsulated in the following slightly different form:

Definition 5. Let R → S be a map of rings. An N-grading of S over R is a decomposition
of S as a direct sum of R-modules S =

⊕
d∈N Sd such that SiSj ⊆ Si+j for all i, j ∈ N —

that is, the product of an element in Si with an element in Sj under the ring’s multiplication
will always lie in Si+j. The choice of a ring S together with an N-grading over R on S
is called an N-graded R-algebra; often, we drop N from the terminology when it can be
assumed from context. When we speak of N-gradings of a ring S without reference to R,
or N-graded rings, we will mean implicitly that the gradings involved are over Z, so that
the direct sum decomposition is simply as abelian groups.

An element h ∈ S is called homogeneous if h ∈ Sd for some d ∈ N; this d is called
its degree. For an arbitrary f ∈ S, the direct sum decomposition guarantees that we can
write f = f0 + f1 + . . .+ fN for some N ∈ N such that fi is homogeneous of degree i for all
0 ≤ i ≤ N ; we call these fis the homogeneous parts of f . If I ⊆ S is an ideal, we say
that I is homogeneous if any of the following equivalent conditions hold:

� I can be generated by homogeneous elements (not necessarily all of the same degree).

� For each f ∈ S, f ∈ I if and only if every homogeneous part of f is in I.

� S/I has an induced N-grading such that the natural surjection S ↠ S/I preserves
degrees.

The homogeneous ideal S+ := S1 ⊕ S2 ⊕ S3 ⊕ . . . generated by the positive-degree elements
is called the irrelevant ideal. We say that S is generated in degree 1 if any of the
following equivalent conditions holds:

� S+ is the ideal generated by the elements of S1.

� S is generated as an S0-algebra by the elements of S1.

� If we consider S1 as an S0-module, then the natural map Sym(S1) → S is a surjection.

The prototypical example of a graded ring is as follows:

Example 2. Let R be a ring, n ≥ 0 an integer, and S := R[x1, . . . , xn] the polynomial ring
in n variables over R. Then S is an N-graded R-algebra with the usual notion of degree;
that is, S0 = R, S1 =

⊕n
i=1 Rxi, S2 =

⊕
1≤i≤j≤nRxixj, and so forth, so that the degree-d

part Sd is the free R-module generated by the degree-d monomials in the variables x1, . . . , xn.
The irrelevant ideal is (x1, . . . , xn), and we can see that S is generated in degree 1 using
any of our equivalent descriptions of this property — note in particular that the natural map
Sym(S1) = Sym (

⊕n
i=1Rxi) → S is an isomorphism.
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More generally, we have:

Example 3. Let R be a ring and M an R-module. Then, if we set

S := SymM =

⊕∞
ℓ=0 M

⊗ℓ

(a⊗ b− b⊗ a | a, b ∈ M)
,

S is an N-graded R-algebra when considered with the grading such that, for each d ∈ N, Sd

is the image of M⊗d under the quotient map
⊕∞

ℓ=0M
⊗ℓ → S. Then we can see that the

irrelevant ideal is generated by S1
∼= M⊗1 ∼= M , and indeed that the natural map Sym(S1) →

S is an isomorphism.

(This is a generalization of Example 2 since the polynomial ring in n variables is the
symmetric algebra of a free module of rank n.)

As mentioned, specifying an N-grading on a ring is the same as giving a monoid action
of A1:

Proposition 1. Let R → S be a ring map. Then specifying an N-grading of S over R is the
same as giving a map A1

R×R SpecS → SpecS of R-schemes which satisfies the axioms for a
monoid action of A1

R from Section 5 when we replace the maps to the one-point space by the
structure maps to SpecR and the cartesian product × by the fiber product ×R everywhere.

(Strictly speaking, we have a stronger result: An anti-equivalence of categories between
R-algebras with such gradings and affine schemes over SpecR carrying such A1

R-actions.)

Proof. If we have an N-grading S =
⊕

d∈N Sd over R, our monoid action will be given by
the R-algebra map S → S ⊗R R[t] ∼= S[t] taking each homogeneous element h ∈ Sd (for any
d ∈ N) to tdh; this is indeed an R-algebra map by virtue of the facts that the direct sum
decomposition is as R-modules and that degree is multiplicative. To verify that it gives a
monoid action, we must check the following, per Definition 10:

� The two maps S → S[t1, t2] given by, respectively, applying our map S → S[t] twice
(with a relabeling of variables) and applying our map S → S[t] followed by the map
S[t] → S[t1, t2] taking t to t1t2 (induced by the monoid structure of A1

R) are the same.

� The composition of S → S[t] with the quotient map S[t] → S[t]/(t − 1) ∼= S is the
identity.

The first of these claims is clear since both maps in question take each h ∈ Sd to t1
dt2

dh.
Likewise, we can verify the second by noting that this composition takes h ∈ Sd to 1dh = h.
Hence each grading over R gives us an A1

R-action.
On the other hand, if we have an A1

R-action given by an R-algebra map α : S → S[t], we
construct an N-grading over R as follows. For each d ∈ N, set Sd := {h ∈ S | α(h) = tdh}.
That each Sd is an R-module follows from the fact that α is an R-algebra map, and we can
see that the R-module map

⊕
d∈N Sd → S induced by the inclusions Sd ↪→ S is itself injective

since tdh = td
′
h for d ̸= d′ implies h = 0. To show that it is surjective, observe for arbitrary

f ∈ S that α(f) = f0 + tf1 + . . . + tnfn for some f0, . . . , fn ∈ S. Since the monoid axioms
guarantee that the composition of α with the quotient map S[t] → S[t]/(t − 1) ∼= S is the
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identity, we can see that f = f0 +1 · f1 + . . .+1n · fn = f0 + . . .+ fn, so the surjectivity will
follow if we can show fd ∈ Sd for each 0 ≤ d ≤ n.

If we apply α twice to f , treating it first as a map S → S[t1] and then as a map
S[t1] → S[t1, t2] induced by a map S → S[t2], we obtain the element α(f0) + t1α(f1) + . . .+
t1

nα(fn). On the other hand, the monoid axioms guarantee that this will be equal to the
result f0 + t1t2f1 + . . . + t1

nt2
nfn of composing α with the map t 7→ t1t2 induced by the

monoid action. Hence, for each 0 ≤ d ≤ n, we find that α(fd) = t2
dfd (when we treat α as a

map S → S[t2]), so fd ∈ Sd as desired. Thus S ∼=
⊕

d∈N Sd as R-modules; that SiSj ⊆ Si+j

for all i, j ∈ N follows from the fact that α is a ring map.
It is not difficult to show that these operations are inverse to one another and moreover

give us a contravariant identification of grading-preserving R-algebra maps with maps of
affine schemes over R with A1

R-monoid actions.

Note that here R is really not so important, affecting only the nature of the direct sum
decomposition, and, if we have maps R′ → R → Z, then an N-grading over R will already be
an N-grading over R′ as well. In particular, all N-gradings are N-gradings over Z — that is,
gradings where we decompose S as a direct sum of abelian groups — and when we note that
they are also N-gradings over R we are simply observing that the corresponding A1-action
happens to “preserve the fibers of SpecS → SpecR” (where, as usual, this statement is
slightly nonliteral due to the possibility of non-reduced behavior).

Now observe that, for any N-grading of a ring S, there is a distinguished “final” ring map
R → S such that this is an N-grading over R — that is, the inclusion S0 ↪→ S. (For the
category-heads: This is indeed final in the sense that every other such map R → S factors
through it uniquely.)

Geometrically, this inclusion corresponds to the natural projection of SpecS onto its
image in SpecS under multiplication by zero — that is, if we compose the ring map S → S[t]
given by the scaling action with the quotient map S[t] → S[t]/(t) given by the zero section
of A1 and take the “closure of the image” of this composed map by factoring through the
quotient S/S+

∼= S0 by its kernel S+, as in Lecture 2, we find that the result is precisely our
inclusion S0 ↪→ S:

SpecS A1
Z ×Z SpecS SpecS

SpecS0

z×id

∃!

·

Hence the monoid-with-zero structure of A1 gives a distinguished projection of SpecS
with “fibers preserved by the scaling action”. As a sanity check:

Exercise 1. Let T be a topological space and R × T → T a continuous monoid action of
(R, ·, 1) on T (i.e., a continuous map satisfying the axioms from Definition 10 when we work
in the setting of topological spaces). Describe the projection of T onto a closed subspace
induced by multiplication by zero as above, and use the monoid axioms to show that each of
its fibers is closed under the scalar multiplication.

Indeed, we can use the monoid-with-zero structure to give the following refinement to
Proposition 1:
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Proposition 2. Let R ↪→ S be an inclusion of rings. Then specifying an N-grading of S with
S0 = R is the same as giving a map A1

R ×R SpecS → SpecS of R-schemes which satisfies
the axioms for a monoid-with-zero action of A1

R from Section 5 when we replace the maps to
the one-point space by the structure maps to SpecR and the cartesian product × by the fiber
product ×R everywhere.

Proof. Proposition 1 gives the correspondence between gradings and actions — we will dis-
cuss the remaining details.

If we have an N-grading such that S0 = R, the quotient map S → S/S+
∼= R gives our

zero section SpecR ↪→ SpecS, and we can see that this is indeed a section — i.e., a map of
SpecR-schemes — since R → S → S/S+

∼= R is the identity. That it satisfies the necessary
condition from Definition 10 follows by observing that this quotient map can be written as
the composition S → S[t] → S[t]/(t) of the maps corresponding to the monoid action and
the zero section of A1

R respectively.
On the other hand, if our monoid action of A1

R is moreover a monoid-with-zero action,
then we have a zero section SpecR → SpecS, given by a ring map S → R with R → S → R
the identity — in particular, this implies that S → R is a surjection. Moreover, from the
commutativity requirement in Definition 10, we find that the composition S → R ↪→ S
agrees with the map S → S[t] → S[t]/(t) ∼= S, which takes S0 identically to itself and
sends all elements of S+ to 0. Hence, as the image of this map, S0 must be contained in R.
However, we know that our action corresponds to a grading over R, and from this it follows
that R is contained in S0 as well. Thus S0 = R, as desired.

Hence, in the setting of affine schemes, all of the monoid action information we want
to consider can be encapsulated in the more algebraically familiar notion of an N-graded
ring, and conversely we can understand the various aspects of an N-grading geometrically in
terms of monoid and monoid-with-zero actions of the affine line on the corresponding ring
spectrum. We now expand our attention to the setting of arbitrary schemes:

Definition 6. Let X be a scheme. A conical fiber space over X is a scheme C over X
together with a map X

z−→ C of X-schemes, called the zero section, and a map A1
X ×X C

·−→
C, called the scalar multiplication, such that · and z define a monoid-with-zero action of
A1

X on C in the sense of the axioms given in Section 5 (where we adapt these by working with
maps of X-schemes instead of maps of sets, replacing the maps to the point by the structure
maps to X, and replacing the cartesian product by the fiber product over X everywhere).

This is to say that a conical fiber space over X is a scheme over X with a “fiberwise
scaling action of the affine line as a monoid-with-zero” — for each x ∈ X, A1

κ(x) acts on the
fiber of C over x by multiplication so that multiplication by zero sends everything to the
point z(x).

Remark 1. The term “conical” comes from the following observation: If we have a topo-
logical space T admitting a continuous monoid-with-zero action of R≥0 (considered as a
monoid-with-zero using the usual multiplication of real numbers), then this restricts to a
group action of R>0. If this action is in particular free on the complement of the basepoint
x in T , we can see that T \ x is a union of open rays given by the orbits of the action, so
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that T itself is the union of rays with the endpoints all identified — that is, an open cone.
(Specifically, this is the cone over the quotient of T \ x by the R>0-action.)

Likewise, if we have an appropriate monoid-with-zero action on a space T by all of R, we
can follow the same reasoning to interpret T as a “two-sided cone” over the corresponding
quotient space. By analogy, we think of a space with a well-behaved monoid-with-zero action
of C as a “complex cone” — that is, a union of complex lines with the origin identified — and
so a scheme with a monoid-with-zero action of A1

k for k some field is likewise interpretable
as a cone in some broad sense (although it is not necessarily true that such an action will,
e.g., restrict to a free group action in the way described above). Hence a conical fiber space
over a scheme is one such that “each fiber is a cone”.

Example 4. Let X be a scheme. Then any linear fiber space over X is also a conical
fiber space over X simply by forgetting the additive structure; this follows immediately by
comparing the two collections of axioms defining linear and conical fiber spaces respectively.

This is to say that any scheme which is “fiberwise a vector space” over X in particular
has a “fiberwise A1

X-action” by the scalar multiplications of the vector spaces, and each vector
space can be thought of as “the union of its lines through the origin” (although this is not
literally true on the level of underlying sets because of the presence of non-closed points).

In order to describe conical fiber spaces algebraically, we make the following relative
version of Definition 5:

Definition 7. Let X be a scheme and A a quasicoherent sheaf of OX-algebras. Then an
N-grading of A is a direct sum decomposition A =

⊕
d∈N Ad as sheaves of OX-modules such

that AiAj ⊆ Ai+j for all i, j ∈ N; in general, we adapt the terminology of Definition 5 to
this setting by replacing ring elements by sections, ideals by sheaves of ideals, and so forth.

We now have the following generalization of Proposition 2:

Proposition 3. Let X be a scheme. Then we have an anti-equivalence between the category
of conical fiber spaces C

π−→ X over X such that π is an affine map and the category of
N-graded quasicoherent sheaves A of OX-algebras such that A0 = OX ; this is given by the
functors taking A to SpecA and C to π∗OC.

Proof idea. If we work affine-locally on X, this is essentially the correspondence of Proposi-
tion 2 together with the usual correspondence between affine maps and quasicoherent sheaves
of algebras.

Remark 2. The condition A0 = OX is needed to ensure that the grading gives an honest
monoid-with-zero action, per Proposition 2; if we consider an N-graded algebra not satisfying
this condition, we find instead that SpecA is a conical fiber space over the relative spectrum
SpecA0.

4 Z-Graded Rings and Projectivization

With the introduction of conical fiber spaces, we now have the objects we will projectivize,
and it is clear how to take the complement of the zero section in such a scheme — it remains
to define the quotient by the group action. We begin by formalizing the group in question:
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Proposition/Definition 1. Let X be a scheme. Then (A1
X)

∗ := X ×Z SpecZ[t]t, the
punctured affine line over X, is an abelian group over X (i.e., one that satisfies the
diagrammatic versions of the abelian group actions from Lecture 6 in the setting of schemes
over X) when considered with the group structure induced by the multiplication on A1

X and
the inverse map Z[t]t → Z[t]t taking t to t−1.

As the name would suggest, the punctured affine line is simply the trivial line bundle
over X with the zero section removed. As in the case of the affine line, we can describe the
rings and algebras admitting actions of the punctured affine line:

Definition 8. Let R → S be a map of rings. A Z-grading of S over R is a decomposition
S =

⊕
d∈Z Sd as a direct sum of R-modules such that SiSj ⊆ Si+j for all i, j ∈ Z. If X is a

scheme and A a quasicoherent sheaf of OX-algebras, a Z-grading of A is defined analogously
as a decomposition into a direct sum of sheaves of OX-modules. The terminology we will use
for Z-graded rings and sheaves will generally follow that introduced in Definition 5.

We now have the following analogue to Proposition 1:

Proposition 4. Let R → S be a ring map. Then specifying a Z-grading of S over R is the
same as giving a map (A1

R)
∗×R SpecS → SpecS of R-schemes which defines a group action

over SpecR.

Proof idea. Entirely analogous to the proof of Proposition 1.

(More broadly, we can see that there will be a correspondence between affine schemes
over a scheme X admitting an action of the punctured line and Z-graded algebra sheaves.)

Now, it is clear that any N-grading is also a Z-grading with the negatively-indexed
homogeneous parts equal to zero; similarly, any A1-action induces a (A1)∗-action simply
by restricting over the complement of the zero section in A1. The advantage of viewing an
N-graded ring as Z-graded can be seen through the following:

Proposition 5. Let R → S be a ring map fix a Z-grading of S over R. Then, for each
degree d ∈ Z and homogeneous degree-d element h ∈ Sd, the localization Sh admits a unique
Z-grading over R such that the natural map S → Sh is degree-preserving, given by taking
1
h
∈ (Sh)−d.

We can now construct the desired quotient of the complement of the zero section in a given
(relatively affine) conical fiber space. We begin with the case where the base scheme is affine:
Let R be a ring and observe that the affine conical fiber spaces over SpecR are precisely the
spectra of N-graded algebras S over R with S0 = R. For such an algebra, the inclusion of
the zero section corresponds to the quotient map S → S/S+, and so its complement is the
union of the open subschemes SpecSf as f runs over any generating set of the ideal S+. In
particular, since S+ is a homogeneous ideal, we can restrict our attention to a homogeneous
generating set; explicitly, our complement is covered by the open subschemes Sh for h ∈ Sd

where d ≥ 1 is a positive integer.
By our prior proposition, each such Sh is Z-graded; that is, while it no longer necessarily

admits an action by A1
R, it does still have the restricted action of (A1

R)
∗. Geometrically,

the point is that the vanishing locus V (h) consists of the zero section, since the degree of h
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is positive, together with some “union of lines through the origin” — that is, orbits of the
(A1

R)
∗-action. The complement SpecSh is then the “union of all remaining (A1

R)
∗-orbits”,

with the zero section excluded. We must now ask:

Question. What should the “quotient of SpecSh by its (A1
R)

∗-action” be algebraically?

The answer arises by thinking of Sh, as usual, as the collection of “functions on SpecSh”
— if one wants, the collection of maps SpecSh → A1

R of schemes over SpecR. We should
then ask which functions f should factor as follows:

SpecSh A1
R

“ SpecSh/(A1
R)

∗”

f

∃?

From the analogous situation in the topological setting, we should expect that the answer
is “functions which are invariant under the group action” — that is, those functions such
that f(gx) = f(x) for all g in the group and x in the space under consideration. Hence:

Answer. The spectrum of the ring (Sh)0 which is the degree-zero part of Sh; under our
correspondence between gradings and actions, this is precisely the collection of f ∈ Sh which
are fixed by the map Sh → Sh[t]t giving the group action.

This operation — taking the spectrum of the invariant subring under the group action
— gives us the quotient in the sense of geometric invariant theory, and may not always give
nice results of the form we want, although it works in this case. (As one example, trying
to take the “quotient” of SpecS by (A1

R)
∗ in the same way leads to difficulties.) In general,

the quotient by a group action may not exist in the world of schemes, and may need to be
defined as a more general object called a stack — we won’t get into the details.

We are now, at long last, ready to define our analogue to the classical projectivization of
Definition 4:

Proposition/Definition 2. Let R be a ring and S an N-graded R-algebra with S0 = R.
Then the SpecR-schemes Spec(Sh)0 as h runs over the homogeneous elements of S+ naturally
patch together to form a single SpecR-scheme ProjS (or P(SpecS)), called the homoge-
neous spectrum of S (or the projectivization of SpecS). The maps induced by the ring
inclusions (Sh)0 ↪→ Sh glue together into a map SpecS \ SpecR → P(SpecS), called the
quotient map (where SpecR ↪→ SpecS is the zero section).

If X is a scheme and C → X is a conical fiber space over X which is affine over X,
with A the corresponding N-graded quasicoherent algebra sheaf, applying this construction
over affine opens gives a well-defined X-scheme ProjA (also called P(C)), which we call
the (relative) homogeneous spectrum of A (or the projectivization of C). As in the
affine case, we have the quotient map C \X → P(C), where X ↪→ C is the zero section.

We will explore this construction in more detail, and introduce the most typical examples,
in next week’s lecture.
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5 Appendix: More Algebraic Objects via Diagrams

As in Lecture 6, we will denote the one-point set by P , and, for any set S, the natural map
S → P by π. If A1 × · · · × An is a product of sets, we will denote the projection onto the
ith factor by πi; if B is another set and fi : B → Ai are maps, we will denote the induced
map B → A1 × · · · × An by f1 × · · · × fn. To save space, we will often omit composition
symbols — that is, for maps f and g, we write gf instead of g ◦ f . We will also write binary
operations using infix notation — e.g., f · g in place of the composition ·(f × g).

Definition 9. A monoid-with-zero consists of a set M together with maps M ×M
·−→ M ,

P
u−→ M , and P

z−→ M such that (M, ·, u) is a monoid and, in addition, the following diagram
commutes:

M M ×M

M ×M M

(zπ)×id

id×(zπ) zπ ·

·

Definition 10. Let (M, ·, u) be a monoid and X a set. Then a (left) monoid action of

M on X is a map M ×X
·−→ X such that the following diagrams commute:

M ×M ×X M ×X

M ×X X

(π1·π2)×π3

π1×(π2·π3) ·

·

X M ×X

X

(uπ)×id

id
·

If we also have a map P
z−→ M such that (M, ·, u, z) is a monoid-with-zero, we say that

our monoid action is a monoid-with-zero action when we have a map P
x−→ X, called the

basepoint or zero section of X, such that the following diagram commutes:

X M ×X

X

(zπ)×id

xπ
·
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