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We continue our discussion of projectivization and the spaces and maps we obtain thereby.

1 Projective Space

As a concrete example of our general projectivization construction, we introduce the algebro-
geometric version of the classical projective spaces discussed last week:

Definition 1. Let X be a scheme. Then projective n-space over X is the projectivization
PnX := P(An+1

X ) of the trivial rank-(n+ 1) vector bundle over X. If R is a ring, as usual, we
may write PnR in place of PnSpecR.

We construct this object explicitly in the simplest case:

Example 1. Let k be a field and consider Pnk = P(An+1
k ) = Proj k[x0, . . . , xn], the “space

of lines through the origin in An+1
k ”. By definition, this is constructed as a “quotient” of

An+1
k \V (x0, . . . , xn) in the affine charts given by inverting each positive-degree homogeneous

polynomial h ∈ k[x0, . . . , xn]; however, it is in fact enough to consider any subcover of this
open cover of the punctured affine space, which is to say that we can restrict our attention
to any chosen set of generators of the irrelevant ideal (x0, . . . , xn).

We will consider the generators x0, . . . , xn. For each 0 ≤ i ≤ n, let

Ũi := Spec k[x0, . . . , xn]xi

be the complement of the coordinate hyperplane V (xi) in An+1
k , and observe that these open

subschemes indeed form an open cover of An+1
k \ V (x0, . . . , xn), with transition maps given

by the natural isomorphisms (k[x0, . . . , xn]xi)xj
∼= k[x0, . . . , xn]xixj

∼= (k[x0, . . . , xn]xj)xi. We
now take the quotient of this whole picture under the scaling action by considering the degree-
zero parts of all rings involved; specifically, we let

Ui := Spec(k[x0, . . . , xn]xi)0 = Spec k
[
x0
xi
, . . . , xi−1

xi
, xi+1

xi
, . . . xn

xi

]
∼= An

k

*First draft of the TeX source provided by Márton Beke.
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for each 0 ≤ i ≤ n (where the subscript refers to taking the degree-zero part, rather than
a further localization), with quotient maps Ũi → Ui induced by the natural ring inclusions
(k[x0, . . . , xn]xi)0 ↪→ k[x0, . . . , xn]xi. Now, the transition maps for the Ũi are identifica-
tions of Z-graded rings, and hence in particular induce isomorphisms ((k[x0, . . . , xn]xi)xj)0

∼=
(k[x0, . . . , xn]xixj)0

∼= ((k[x0, . . . , xn]xj)xi)0 of degree-zero parts; in the local coordinates spec-
ified above, these are given by the k-algebra isomorphisms

k
[
x0
xi
, . . . , xi−1

xi
, xi+1

xi
, . . . xn

xi

]
xj
xi

∼−→ k
[
x0
xj
, . . . ,

xj−1

xj
,
xj+1

xj
, . . . xn

xj

]
xi
xj

taking each xℓ
xi

to
(
xℓ
xj

)(
xi
xj

)−1

. These are our transition maps for the Ui, and so we obtain

Pnk by gluing along them; the quotient map An+1
k \V (x0, . . . , xn) → Pnk is likewise obtained by

gluing the maps Ũi → Ui.

To reassure yourself about our reduction from the collection of all elements of the irrele-
vant ideal to the generators, complete the following:

Exercise 1. Pick your favorite field k, integer n ≥ 0, and positive-degree homogeneous
polynomial h ∈ k[x0, . . . , xn]. Verify that the affine open subscheme Spec(k[x0, . . . , xn]h)0
of Pnk corresponding to h is covered by its intersections with the affine opens U0, . . . , Un of
Example 1.

In particular, we can retrieve the following scheme, which we first constructed as an
exercise in Lecture 2:

Example 2. Consider P1
C = ProjC[x0, x1], the space of lines through the origin in the

affine plane over C. As noted in Example 1, this scheme is covered by the affine opens
U0 = SpecC[x1

x0
] and U1 = SpecC[x0

x1
], with the gluing given by the C-algebra isomorphism

C[x1
x0
]x1
x0

∼−→ C[x0
x1
]x0
x1

taking x1
x0

to
(
x1
x1

)(
x0
x1

)−1

=
(
x0
x1

)−1

. If we set x := x1
x0

and y := x0
x1
, we

can see that this precisely agrees with our construction from Lecture 2.

Exercise 2. Write down charts and transition maps for P2
C.

As mentioned, a great deal of work in contemporary algebraic geometry is done in the
setting of projective space over a field (often, an algebraically closed one). Of course, just as
the interesting things to study in the affine setting turn out to be vanishing loci of collections
of polynomials more than, really, the schemes An

k themselves, the real objects of study in
projective geometry are closed subschemes of Pnk . These arise as projectivizations of “unions
of lines through the origin in affine spaces” — that is, subschemes of affine spaces preserved
by the scaling action:

Proposition/Definition 1. Let k be a field, n ≥ 0 an integer, and I ⊆ k[x0, . . . , xn]
a homogeneous ideal. Then Proj k[x0, . . . , xn]/I is naturally a closed subscheme of Pnk =
Proj k[x0, . . . , xn], with the inclusion induced locally on each affine open Spec(k[x0, . . . , xn]h)0
(h ∈ k[x0, . . . , xn] homogeneous of positive degree) by the degree-zero part of the quotient
map k[x0, . . . , xn]h → k[x0, . . . , xn]h/Ik[x0, . . . , xn]h. We call this the projective vanishing
locus of I and denote it by PV (I). (This notation is not completely standard — often this is
referred to simply as V (I), with the distinction from the affine vanishing locus left to context,
although we will not adapt that convention here.)
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As an easy example, we have the projective vanishing loci of the coordinate hyperplanes:

Example 3. Let k be a field, n ≥ 0 an integer, and 0 ≤ i ≤ n another integer, and con-
sider the projective n-space Pnk = Proj k[x0, . . . , xn]. Then the projective vanishing locus
PV (xi) ⊆ Pnk of the ideal (xi) is the projectivization Proj k[x0, . . . , xn]/(xi) of the ith coordi-
nate hyperplane; by the natural identification of k[x0, . . . , xn]/(xi) with a polynomial ring in
n variables, we can see that this is an isomorphic copy of Pn−1

k .

Of course, more complicated closed subschemes are also possible. Take, for example, the
following:

Example 4. Consider A3
C = SpecC[x, y, z] and P2

C = ProjC[x, y, z]. The hypersurface
V (z2 − xy) in A3

C is a cone (for visualization purposes, note that we have z = ±√
xy or,

after the change of coordinates with x = x̃ − iỹ and y = x̃ + iỹ, z = ±
√
x̃2 + ỹ2) with an

isolated singular point at the origin, and so its projectivization PV (z2−xy) is a nonsingular
conic curve in the projective plane P2

C. To better understand its shape, we consider the
intersections with our standard charts.

In Ux = SpecC[ y
x
, z
x
], we find that our curve is given as the spectrum of the degree-zero

part of C[x, y, z]x/(z2 − xy)C[x, y, z]x and that the degree-zero part of (z2 − xy)C[x, y, z]x is

the ideal in (C[x, y, z]x)0 generated by z2−xy
x2

. This is to say that our curve’s intersection with
Ux is given by the closed subscheme SpecC[ y

x
, z
x
]/(( z

x
)2 − y

x
) of SpecC[ y

x
, z
x
], a parabola.

The picture for Uy = SpecC[x
y
, z
y
] is entirely the same once x and y have been inter-

changed; the result is a parabola SpecC[x
y
, z
y
]/(( z

y
)2 − x

y
).

Finally, in Uz = SpecC[x
z
, y
z
], we find that our ideal of (C[x, y, z]z)0 is generated by z2−xy

z2
.

Hence we obtain the hyperbola SpecC[x
z
, y
z
]/(1 − x

z
y
z
); if we use our change of coordinates

from above, we get instead SpecC[ x̃
z
, ỹ
z
]/(1− ( x̃

z
)2 − ( ỹ

z
)2).

We are now in a position to examine in more detail the idea that projective space is
the “space of lines through the origin” in affine space — for simplicity, we work over an
algebraically closed field:

Example 5. Let k be a algebraically closed field and n ≥ 0 an integer and consider Pnk =
Proj k[x0, . . . , xn]. Take a closed point p ∈ Pnk ; if we believe that our constructions so far
have been the right ones, this should correspond to a line through the origin in An+1

k , and we
will now demonstrate this correspondence explicitly.

Recalling our open cover U0, . . . , Un of Example 1, we see that we can, without loss of
generality, suppose that p ∈ U0 = Spec k[x1

x0
, . . . , xn

x0
]. Since k is algebraically closed, the Null-

stellensatz guarantees that, for some a1, . . . , an ∈ k, p is given in U0 by V (x1
x0
−a1, . . . , xnx0 −an).

Hence, since the quotient map Ũ0 → U0 is given by the inclusion of k[x1
x0
, . . . , xn

x0
] into

k[x0, . . . , xn]x0 as the degree-zero part, we find that the fiber of the quotient map over this
point is Spec k[x0, . . . , xn]x0/(

x1
x0
−a1, . . . , xnx0 −an) = Spec k[x0, . . . , xn]x0/(x1−a1x0, . . . , xn−

anx0) = Spec(k[x0, . . . , xn]/(x1−a1x0, . . . , xn−anx0))x0, a punctured line through the origin
in An+1

k . Is closure, cut out by the kernel of the natural map k[x0, . . . , xn] → (k[x0, . . . , xn]/(x1−
a1x0, . . . , xn − anx0))x0, is simply the line V (x1 − a1x0, . . . , xn − anx0).

Hence for any closed point in our projective space Pnk we obtain a line through the origin
in An+1

k by taking the closure of the preimage under the quotient map. On the other hand, if
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we have a line through the origin, we can see that it will be cut out by some ideal I generated
by n linearly independent linear forms, and up to a permutation of coordinates it can thus
be written in the form V (x1 − a1x0, . . . , xn− anx0) discussed above. By working again in the
affine patch U0, we find that the projectivization PV (x1 − a1x0, . . . , xn − anx0) of the line is
a single closed point, given in the local coordinates as V (x1

x0
− a1, . . . ,

xn
x0

− an). Therefore, as
desired, we obtain a bijection between closed points of projective space and lines through the
origin in affine space.

More generally, if we expand our attention to non-closed points and even arbitrary graded
rings, we find the following justification for the term “homogeneous spectrum” introduced
last week:

Proposition 1. Let S be an N-graded ring. Then the points of ProjS correspond to homoge-
neous prime ideals p of S not containing the irrelevant ideal S+, and the topology is the one
generated by open sets of the form {p ̸⊇ S+ homogeneous | p ̸∋ h} for homogeneous elements
h of S. (Equivalently: The closed sets are those of the form {p ̸⊇ S+ homogeneous | p ⊇ I}
for homogeneous ideals I ⊆ S.)

This is to say that the points of ProjS can be identified with the points of SpecS whose
closures are closed under the scaling action and not contained in the zero section — that is,
those whose closures have well-defined, non-empty projectivizations. (Note, however, that
this identification does not give any kind of inclusion of subschemes — for example, contrast
the residue fields of the identified closed points and the generic points of the corresponding
lines in Example 5.) The distinguished open sets {p ̸⊇ S+ homogeneous | p ̸∋ h} described
here are precisely the underlying sets of the open subschemes Spec(Sh)0, and the closed
sets {p ̸⊇ S+ homogeneous | p ⊇ I} are the underlying sets of the closed subschemes
P(V (I)) = ProjS/I.

Now that we have our identification of points in projective space with lines, we can
reproduce our classical view of projective n-space as affine n-space plus a “projective (n−1)-
space at infinity” from last week, which was given by identifying, e.g., the lines through the
origin not contained in V (x0) with their intersections with V (x0 − 1):

Remark 1. Let k be a field and n ≥ 0 an integer, and consider the affine chart U0 =
Spec(k[x0, . . . , xn]x0)0 = Spec k[x1

x0
, . . . , xn

x0
] in Pnk = Proj k[x0, . . . , xn], as discussed in Exam-

ple 1. Then the composed map

(k[x0, . . . , xn]x0)0 ↪→ k[x0, . . . , xn]x0 ↠ k[x0, . . . , xn]/(x0 − 1)

is an isomorphism; writing the source as k[x1
x0
, . . . , xn

x0
] and the target as k[x1, . . . , xn], we can

see that this is the k-algebra map taking xi
x0

to xi
1
= xi for each 1 ≤ i ≤ n.

By taking spectra, we obtain an isomorphism V (x0 − 1)
∼−→ U0 which maps each k-valued

point of V (x0−1) to the point of U0 corresponding to the line through the origin it lies on, as
in the classical case. Since V (x0−1) ∼= An

k and the complement of U0 in Pnk is PV (x0) ∼= Pn−1
k

(as discussed in Example 3), this once again gives us our view of Pnk as a “compactification”
of An

k by adding a Pn−1
k at the boundary.

More generally, this gives us a way to “compactify” closed subschemes of An
k :
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Definition 2. Let k be a field and n ≥ 0 an integer, and consider a nonzero polynomial
f ∈ k[x1, . . . , xn]. Using the typical grading of the polynomial ring, we have a unique de-
composition f = f0 + . . . + fd for some integer d ≥ 0 so that each fi is homogeneous of
degree i and fd ̸= 0. The homogenization of f with respect to x0 is then the element
x0

df0 + x0
d−1f1 + . . .+ x0fd−1 + fd of the polynomial ring k[x0, . . . , xn] ∼= (k[x1, . . . , xn])[x0];

this is a homogeneous element of degree d.
If I ⊆ k[x1, . . . , xn] is an ideal, then the homogenization of I with respect to x0 is

the (homogeneous) ideal of k[x0, . . . , xn] generated by the homogenizations of the nonzero
elements of I. The projective vanishing of the homogenization of I is called the projec-
tive closure of V (I); as the name suggests, it is the closure of V (I) in Pnk if we identify
Spec k[x1, . . . , xn] = An

k with U0 as in the preceding remark.

Example 6. Consider the polynomial f = x1 − 1 in C[x1, x2] and note that V (f) ∼= A1
C is

a line in A2
C. The homogenization of f with respect to x0 is x1 − x0, the vanishing of which

defines a plane in A3
C; this plane’s projectivization gives a projective line PV (x1 − x0) ∼= P1

C
in P2

C, the projective closure of our original affine line.

Exercise 3. Pick an integer n ≥ 0 and a few of your favorite closed subschemes of An
C, and

compute their projective closures.

Remark 2. If k is a field, n ≥ 0 is an integer, and f ∈ k[x1, . . . , xn] is a polynomial, we
can see that the part of the projective closure of the vanishing of f lying in the hyperplane
PV (x0) “at infinity” is determined entirely by its highest-degree term. The intuition is that,
as we move farther and farther from the origin, the higher-order terms should dominate the
lower-order ones, and hence control the shape of the vanishing locus “at the points infinitely
far from the origin”. More broadly, if I is an ideal of the polynomial ring, we find that the
part of the projective closure of V (I) lying in the hyperplane at infinity is determined by the
highest-degree terms of elements of I.

(If I is not a principal ideal, it may not in general be enough to consider the ideal
generated by the highest-degree terms of a given set of generators for I, since there may be
cancellations among these terms if the generating set is chosen poorly; this problem, loosely
speaking, gives an entry point to the theory of Gröbner bases, sets of generators for ideals
which behave well with respect to the operation of “taking highest-order terms” in some
appropriate sense.)

Remark 3. In general, if X is a scheme and C → X is a conical fiber space affine over X,
then the machinery of Definition 2 can be adapted to give projective closures of subschemes
of C in P(C ×X A1

X). On the level of rings, this is to say that, if S is an N-graded ring, we
can formulate a suitable definition of the homogenization of an arbitrary f ∈ S with respect
to x0, which gives an element of the N-graded ring S[x0] (considered with the grading such
that x0 has degree 1). Note in particular that the “part at infinity”, ProjS[x0]/(x0), will
simply be the projectivization P(C) (for C = SpecS).

2 Projective Maps

We now zoom out from our study of projective space in particular and return to the ex-
amination of projectivizations of conical fiber spaces more generally. The structure maps
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of projectivizations of (nice) conical fiber spaces are important enough to have their own
names:

Definition 3. Let X be a scheme. A projective map to X is one which, up to isomorphism,
arises as the structure map P(C) → X for C a conical fiber space over X which is a closed
sub-conical fiber space of Spec+(F) for some locally finitely generated quasicoherent sheaf F .
(If X is locally Noetherian, this is to say that F is coherent.)

In terms of algebras, our definition says that a projective map is one which arises as
the structure map ProjA → X for A an N-graded quasicoherent algebra sheaf on X with
A0 = OX which is locally finitely generated in degree 1.

Remark 4. Unfortunately, there is some inconsistency in the literature as to the meaning
of the term “projective map” — Hartshorne’s version, e.g., substitutes a trivial finite-rank
vector bundle for the more general Spec+(F). This is typically not a big deal, but the def-
initions do not agree in all circumstances and some results will apply for one but not the
other.

We will not go into very much detail on projective maps for their own sake; however, the
following result is worth noting:

Theorem 1. Every projective map is proper.

Proof. Since properness is local on the target, we can reduce to the case of the map ProjS →
SpecR for R a ring and S an N-graded R-algebra with S0 = R which is finitely generated
in degree 1; write S = R[x0, . . . , xn]/I for I some homogeneous ideal generated in positive
degree. We then see by considering affine patches of the domain that our map is of finite
type, as required.

Moreover, we can see that it is separated by observing that the n+1 affine patches given
by the generators x0, . . . , xn of the irrelevant ideal cover ProjS and, for each 0 ≤ i, j ≤ n,
the part of the diagonal morphism ProjS → ProjS ×R ProjS lying in the affine open
Spec(Sxi)0 ×R Spec(Sxj)0

∼= Spec((Sxi)0 ⊗R (Sxj)0) is given by the quotient by the ideal
(x0
xi
− xj

xi
· x0
xj
, . . . , xn

xi
− xj

xi
· xn
xj
) (where we understand xi

xi
and

xj
xj

to be equal to 1 ∈ R). Hence

the diagonal is indeed a closed embedding.
To verify universal closedness, we will use the valuative criterion; let K be a field and v a

valuation on K, and fix maps SpecK → ProjS and SpecOv → SpecR making the following
diagram commute:

SpecK ProjS

SpecOv SpecR

It is now enough to show that there is a lift SpecOv → ProjS commuting with the given
maps.

Since SpecK is a single point, its image in ProjS is contained in one of the aforementioned
open affine patches; without loss of generality, suppose this image lies in Spec(Sx0)0. Then
the map SpecK → Spec(Sx0)0 is given by a ring map (Sx0)0 → K, and the existence of our
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map SpecOv → SpecR making the diagram commute precisely guarantees that all elements
of R are sent to nonnegatively-valued elements of K. Consider the elements x1

x0
, . . . , xn

x0
of

(Sx0)0 and let v1, . . . , vn be the valuations of their images under the map to K.
If vi ≥ 0 for all 1 ≤ i ≤ n, then the map (Sx0)0 → K factors through Ov and so our

map from SpecOv already has a lift within the affine open Spec(Sx0)0 ⊆ ProjS. If not,
suppose without loss of generality that v1 ≤ vi for all 1 ≤ i ≤ n. Then we can see that the
valuation of x1

x0
is negative, and in particular this element is not sent to zero in K. Hence

our map (Sx0)0 → K factors to a map ((Sx0)0)x1
x0

→ K and we have v((x1
x0
)−1) = −v1 > 0

and, for any 2 ≤ i ≤ n, v( xi
x0
(x1
x0
)−1) = vi − v1 ≥ 0. Using the canonical identification

((Sx0)0)x1
x0

∼= ((Sx1)0)x0
x1
, we thus see that in fact the map from SpecK factors through

the intersection of Spec(Sx0)0 and Spec(Sx1)0 and, if we consider the corresponding map
(Sx1)0 → K, the elements x0

x1
, . . . , xn

x1
will be sent to nonnegatively-valued elements of K.

Hence, as before, the map from SpecOv has a lift within Spec(Sx1)0 ⊆ ProjS.

In practice, most proper maps we are interested in will end up being projective; however,
as we will discuss in Remark 5, it is possible to construct non-projective proper maps.

The following class of projective maps is often of especial interest, both algebraically and
geometrically:

Proposition/Definition 2. A map ϕ : X → Y of schemes is said to be finite if it satisfies
any of the following equivalent conditions:

1. ϕ is affine and, for each affine open SpecR ⊆ Y , if we take R → S to be the ring map
corresponding to the restriction of ϕ over SpecR, the algebra structure on S makes it
a finitely-generated R-module. (Note that this is a much stronger condition than being
a finitely-generated R-algebra!)

2. ϕ is affine and proper.

3. ϕ is affine and projective.

In addition, finite maps have finite fibers (in the sense that the fiber of such a map over any
point of the target is set-theoretically a finite union of points) and, if Y is Noetherian, we
have the following extra equivalent condition for the finiteness of ϕ:

4. (Y Noetherian) ϕ is projective and has finite fibers.

Closed inclusions, being both affine and proper, are an easy class of examples of finite
maps; more broadly, one can think loosely that finite maps correspond to proper maps with
finite fibers on the topological side, bearing in mind the usual caveats about the relationship
between topological and algebro-geometric notions of properness. Note, in particular, that
the condition of having finite fibers on its own is not enough to guarantee finiteness in
general; open inclusions, for example, are mostly not finite even though all of them fulfill
this criterion.

Finite maps are particularly important in the study of closed subschemes of affine space
over a field k, where Noether normalization guarantees the existence of a finite surjective
map from such a subscheme to an appropriate-dimensional affine space; such maps can then
be exploited to prove many classical properties of finite-type k-schemes. However, we will
not develop this theory in detail.
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3 Affine Cones

We now come to a somewhat subtle point in the theory: the relationship between a (rela-
tively affine) conical fiber space and its projectivization. Often — for example, in projective
geometry — the projectivization will be seen as the primary object of interest geometrically,
but most arguments will still be made in terms of the corresponding graded algebra or sheaf
of algebras, since working with a ring is easier than working chartwise with a non-affine
scheme. This leads to a disconnect between properties which hold on the projectivization
(typically called “geometric”) and those which hold on the conical fiber space/graded algebra
sheaf itself (typically called “arithmetic”) — in Example 4, e.g., we might say we have a
projective hypersurface which is “geometrically nonsingular” but “arithmetically singular”,
since the conic curve itself is smooth, while the algebra C[x, y, z]/(z2 − xy) we got it from
has a singularity in its spectrum.

In dealing with such issues, the following terminology can be helpful:

Definition 4. Let X be a scheme and C a conical fiber space over X which is affine over
X. Then C is called an affine cone of P(C) over X.

The point is then that “geometric” properties are the properties of P(C), while “arith-
metic” properties are simply the properties of the affine cone C being considered; in partic-
ular, they still admit geometric interpretations, despite the terminology.

As the indefinite article in our definition suggests, however, affine cones are not unique:

Example 7. Let X = SpecC, and consider A2
C = SpecC[x, y] as a conical fiber space

over X in the usual way coming from its vector bundle structure, which corresponds to
the standard grading on C[x, y]. Then (y) and (xy, y2) are both homogeneous ideals, so
C := SpecC[x, y]/(y) and C ′ := SpecC[x, y]/(xy, y2) are both closed sub-conical fiber spaces
of A2

C.
Now, we can see that C ̸∼= C ′, since, e.g., the former is reduced while the latter is not;

recall that C ′ is “C with an extra infinitesimal direction at the origin”. However, precisely
because the difference is confined to the origin — that is, because the intersections of C and
C ′ with the complement of the origin in A2

C are the same — we find that P(C) and P(C ′)
are the same, abstractly and even as closed subschemes of P1

C = P(A2
C).

In this case, one may notice that not all affine cones seem to be created equal; although
C and C ′ both have the same projectivization, C is clearly a more “natural” affine cone
for it in the sense that there is nothing extraneous happening at the origin. In general, if
we are working inside the projectivization of a fixed larger canonical fiber space, a closed
subscheme does admit a kind of “canonical” affine cone inside this ambient space, the one
which is saturated with respect to the zero section; implicitly, the “arithmetic” properties
of closed subschemes of projective space discussed above are typically taken with respect to
this saturated cone. For more details on this construction, see, e.g., Section 15.7 of Vakil
(after reading Section 4 below).

However, this very much depends on the chosen ambient conical fiber space, and without
such a fixed embedding deeper issues will arise. As a first step toward exploring these, we
introduce a kind of functoriality of projectivization:
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Proposition/Definition 3. Let X be a scheme, C and D conical fiber spaces affine over
X, and γ : A1

X → A1
X a map of fiberwise monoids-with-zero over X (i.e., γ is given by the

OX-algebra map OX [t] → OX [t] taking t to t
n for some n > 0). Suppose we have a map

ϕ : C → D of X-schemes such that the following diagram commutes:

A1
X ×X C C

A1
X ×X D D

·

γ×ϕ ϕ

·

(Equivalently: We have a map πD∗OD → πC∗OC of the corresponding OX-algebra sheaves
such that, for each d ∈ N, the homogeneous degree-d part (πD∗OD)d maps into (πC∗OC)nd
for the same n > 0. Here πC : C → X and πD : D → X denote the projection maps.)

Then, if we let X ∼= ZD ↪→ D be the zero section of D and denote by ϕ∗ZD the locus
C ×D ZD in C mapping into it under ϕ, there is an induced map P(ϕ) : P(C) \ P(ϕ∗ZD) →
P(D) on projectivizations which is functorial in the appropriate sense (i.e., the construction
respects compositions over the locus where all relevant maps are defined). We call this map
the projectivization of ϕ.

(The role of γ is just to give a bit more flexibility in the kinds of maps we can consider
— instead of thinking only of those which are equivariant under our A1

X-action, we allow
also maps equivariant up to a twist by some monoid-with-zero endomorphism of A1

X .)

Proof sketch. By working affine-locally on X, we can consider only the case of N-graded R-
algebras S, T with S0 = T0 = R and an R-algebra map ψ : S → T multiplying all degrees by
some n > 0. For any homogeneous positive-degree element h ∈ S+, we have an induced map
Sh → Tψ(h) of Z-graded algebras which again multiplies all degrees by n; in particular, this
restricts to a map (Sh)0 → (Tψ(h))0 of degree-zero parts, giving a map from the appropriate
affine patch Spec(Tψ(h))0 of P(C) = ProjT to the affine patch Spec(Sh)0 of P(D) = ProjS.
Since the zero section ZD is cut out in D = SpecS by the irrelevant ideal S+ and so ϕ∗ZD is
cut out in C = SpecT by ϕ(S+)T , we can see that the affine patches SpecTψ(h) for such h give
an open cover of C \ ϕ∗ZD; hence the corresponding affine patches Spec(Tψ(h))0 collectively
form an open cover of P(C) \ P(ϕ∗ZD) and thus these maps will give us our P(ϕ).

Strictly speaking, we should verify that these maps glue properly across the different
affine patches, but we omit this part of the argument. Similarly, we leave the verification
of functoriality to the reader, noting only that, technically, we should work in the category
whose objects are conical fiber spaces over X and whose morphisms are pairs (γ, ϕ) of the
form we are considering; on the level of algebras or sheaves of algebras, this is describable
more simply as the category of N-graded algebra sheaves with degree-zero part OX , with
morphisms given by maps multiplying the degree by specified positive integers.

The inclusions of the projective vanishing loci of Proposition/Definition 1 into projective
space can now be subsumed into our construction here; they are simply the maps induced
on projectivizations in this way by the corresponding inclusions of sub-conical fiber spaces.
Thus, more generally, we can likewise define an appropriate notion of the projective vanishing

9



of any homogeneous ideal in a graded ring or homogeneous ideal sheaf in a graded algebra
sheaf.

Our introduction of the twist by γ allows for constructions such as the following:

Definition 5. Let S be a Z-graded ring and n > 0 an integer. Then the nth Veronese
subring of S is the ring S{n} :=

⊕
d∈Z Snd with the Z-grading such that S{n}d = Snd for

all d ∈ Z. We regard S{n} as being naturally endowed with the inclusion S{n} ↪→ S, which
multiplies degrees by n.

Likewise, if X is a scheme, A is a quasicoherent Z-graded sheaf of OX-algebras, and n > 0
is an integer, we define the nth Veronese subalgebra sheaf of A to be A{n} :=

⊕
d∈ZAnd

with the Z-grading A{n}d = And and the inclusion A{n} ↪→ A.
If our original grading is, in fact, an N-grading (that is, the negative-degree parts are all

zero), the resulting Veronese subobjects will have zero negative-degree parts as well, and so we
may also regard them as N-graded objects. In particular, if X is a scheme, C

π−→ X is a conical
fiber space affine over X, and n > 0 is again an integer, then C{n} := Spec((π∗OC){n}) is
also a conical fiber space over X, which we call the nth Veronese twist of C; we regard this
as being endowed with the map C → C{n} induced by the algebra inclusion (π∗OC){n} ↪→
π∗OC.

(The curly brace notation and the term “Veronese twist” are both nonstandard, but there
do not appear to be widely-accepted alternatives in the literature.)

The geometric intuition for these objects is as follows. For n > 0 an integer, consider the
quotient map C[t] → C[t]/(tn − 1). Then the corresponding map SpecC[t]/(tn − 1) ↪→ A1

C
is the inclusion of the n closed points corresponding to the nth roots of unity in C, and
we can see that the monoid structure of A1

C induces a group structure on SpecC[t]/(tn − 1)
by restriction, so that we can in fact regard it as the algebro-geometric realization of the
group of nth roots of unity in C. Note that the inclusion into the affine line factors as
SpecC[t]/(tn − 1) ↪→ (A1

C)
∗ ↪→ A1

C; that is, the group of nth roots of unity is a subgroup of
the punctured affine line.

Likewise, we can think for a scheme X that the relative spectrum of OX [t]/(t
n− 1) gives

the “fiberwise group of nth roots of unity”. In particular, for S an N-graded ring, the usual
A1
S0
-action A1

S0
×S0 SpecS → S given by the map S → S[t] taking each h ∈ Sd to tdh

can be restricted to an action (SpecS0[t]/(t
n − 1))×S0 SpecS → SpecS of the nth roots of

unity simply by taking the composition S → S[t] → S[t]/(tn − 1). We then see that the
nth Veronese subring of S is precisely the ring of invariants of S under this restricted group
action, since for any d ∈ N and h ∈ Snd we have h 7→ tndh = (tn)dh 7→ 1dh = h under our
composition.

Therefore, by applying this observation in affine charts and adopting once more the geo-
metric invariant-theoretic viewpoint that spectra of rings of invariants should give quotients,
we find for a conical fiber space C affine over a scheme X that the nth Veronese twist C{n}
is simply the quotient of C under multiplication (fiberwise over X) by the nth roots of unity,
with the natural map C → C{n} being the quotient map.

Example 8. Consider the affine line A1
C = SpecC[x] as a conical fiber space over SpecC.

Then the quotient map A1
C → A1

C{2} for the 2nd Veronese twist is given by the inclusion
C[x2] ↪→ C[x]; since C[y] ∼= C[x2], we can regard this as a map from the affine line to itself,
which is the algebro-geometric realization of the usual square map C → C given by z 7→ z2.
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Example 9. Now consider the affine plane A2
C = SpecC[x, y] as a conical fiber space over

SpecC. Then A2
C → A2

C{2} is given by the inclusion C[x2, xy, y2] ↪→ C[x, y]; using the
isomorphism C[u, v, w]/(v2 − uw) ∼= C[x2, xy, y2] taking u to x2, v to xy, and w to y2, we
see that this map realizes the cone of Example 4 as a quotient of the affine plane (albeit with
a change of coordinates). In particular, since we are considering the group of square roots
of unity, we can think of this as the quotient by the antipodal map x 7→ −x, y 7→ −y.

Through this lens, the modification of the grading can be interpreted as follows. If
we were to give each S{n} the grading inherited from S, the corresponding A1

S0
-action

on SpecS{n} would then be the one induced by the quotient map SpecS → SpecS{n}.
However, the group of nth roots of unity would then, by definition, act trivially, so we would
lose nothing by factoring through to the action of the monoid which is the quotient of A1

S0

by the submonoid of nth roots of unity. Algebraically, this quotient is given by the subring
S[tn] of S[t], which we can see is isomorphic to the polynomial algebra S[t′] for t′ = tn; in
particular, the result of taking the quotient is simply another monoid-with-zero action of the
affine line on SpecS, and so we take instead the grading corresponding to this action. This
yields the grading convention of Definition 5.

Since the Veronese twists are defined as quotients of a conical fiber space by subgroups
of the punctured affine line, the following result is, on some level, to be expected:

Proposition 2. Let X be a scheme, C a conical fiber space affine over X, and n > 0 an
integer. Then the projectivization of the quotient map C → C{n} for the nth Veronese twist
gives an isomorphism P(C) ∼−→ P(C{n}).

That is, since we projectivize by throwing away the zero section and modding out by
the action of the punctured affine line, already having taken a quotient by the action of a
subgroup does not change the final result.

Proof. We work affine-locally; let S be an N-graded ring and take X = SpecS0 and C =
SpecS. Let ϕ : C → C{n} denote the quotient map and ZC and ZC{n} the closed subschemes
of C and C{n} respectively given by the zero sections.

The part ϕ∗ZC{n} of C mapping into the zero section of C{n} is cut out by the ideal
(S{n}+)S generated by all homogeneous elements of S with degrees which are positive
multiples of n; since every element of S+ is nilpotent modulo this ideal, we can see that the
underlying sets of ϕ∗ZC{n} and ZC are the same. Thus P(ϕ) is, indeed, defined on all of
P(C).

To show that it is an isomorphism of schemes, we must argue that, for every positive
d ∈ N and h ∈ S{n}d = Snd, the induced map (S{n}h)0 → (Sh)0 on degree-zero parts
is an isomorphism of rings; since these affine patches cover P(C) and P(C{n}), this will
demonstrate that P(ϕ) is an isomorphism globally as well. Since localizations and taking
degree-zero parts both preserve inclusions, we can see that (S{n}h)0 → (Sh)0 is injective.
Now observe that each element of (Sh)0 is of the form g

hk
for k ≥ 0 and g ∈ Sknd, since h

k

is of degree knd and the degrees of numerator and denominator must cancel for our element
to be of degree zero. Hence g ∈ S{n}kd, so our element has a preimage g

hk
in (S{n}h)0 and

thus the map is surjective as well. The result follows.
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Therefore, to return to the original matter under discussion, we see that there is a substan-
tial potential for nonuniqueness of affine cones even when we set aside the issue of nonreduced
behavior at the origin; the projectivization on its own simply does not remember enough
information about the original conical fiber space to distinguish it from its Veronese twists,
let alone other possible candidates.

Remark 5. One consequence of this nonuniqueness is that being a projective map is not a
local condition on the target. That is, although the axioms for a conical fiber space C → X
can certainly be checked target-locally, it may be the case for open U,U ′ ⊆ X and conical
fiber spaces C → U , C ′ → U ′ that we have an isomorphism P(C|U∩U ′) ∼= P(C ′|U∩U ′) over
U ∩U ′ not induced by any isomorphism C|U∩U ′ ∼= C ′|U∩U ′ of conical fiber spaces over U ∩U ′.
Hence, when we glue together along the overlap, we obtain a map that is locally given by
projectivizations without itself possessing this property.

Since properness of maps of schemes is a local condition on the target, and projective maps
are proper, we can thus see that any map which is target-locally projective but not projective
will also be a non-projective proper map; an explicit example was given by Hironaka in his
thesis.

4 Graded Modules and the Tautological Bundle

As discussed in the previous section, affine cones are not unique, and projectivization forgets
some of the information of the original conical fiber space; however, as we will now see, in
nice cases much of this information can be recorded in the form of a particular line bundle
on the projectivized space, called the tautological bundle. To this end, we also develop some
of the theory of quasicoherent sheaves on projectivizations in general:

Definition 6. Let S be a Z-graded ring. A (Z-)graded S-module is an S-module M with
a decomposition M =

⊕
d∈ZMd as abelian groups such that, for each i, j ∈ Z, SiMj ⊆Mi+j.

For such an M and n ∈ Z, we define the nth (Serre) twist of M to be the graded S-module
M(n) such that (M(n))d =Mn+d for all d ∈ Z and the multiplication by S is induced by the
multiplication on M ; that is, M(n) is M with the degree of each element lowered by n.

Similarly, if X is a scheme and A is an Z-graded quasicoherent sheaf of OX-algebras, a
(Z-)graded (quasicoherent) sheaf of A-modules is a quasicoherent sheaf F on X with
an A-module structure and a decomposition F =

⊕
d∈ZFd as sheaves of abelian groups such

that, for each i, j ∈ Z, AiFj ⊆ Fi+j. We define the nth Serre twist F(n) of F for n ∈ Z
by (F(n))d = Fn+d for d ∈ Z, as before.

(For simplicity, we are dealing only with Z-graded modules over Z-graded rings — the
definitions for Z-graded modules over N-graded rings and N-graded modules over N-graded
rings are, however, exactly the special cases you would expect.)

Geometrically, the point is that, for X a scheme, A a Z-graded quasicoherent algebra
sheaf on X, and F a graded sheaf of A-modules, we can regard F as a quasicoherent sheaf
on SpecA and take its spectrum Spec+ F to get a linear fiber space over SpecA with an
action of (A1

X)
∗ which is compatible with the one on SpecA (note that this is not the usual

fiberwise action coming from the vector space structure). That is, over each (A1
X)

∗-orbit in
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SpecA, Spec+F restricts to a vector bundle which is invariant under pullbacks along the
automorphisms of the orbit induced by the action.

If, in particular, A is N-graded with A0 = OX , we then see that the restriction of F over
the complement of the image Z of the zero section gives rise to a linear fiber space which
is constant along the fibers of the quotient map SpecA \ Z → ProjA. As we should thus
expect, this yields a well-defined quotient linear fiber space over the projectivization ProjA:

Proposition/Definition 4. Let S be an N-graded ring and M a Z-graded S-module. Then

the assignments P(M̃)|Spec(Sh)0 := (̃Mh)0 on the affine open patches of ProjS given by
Spec(Sh)0 for h ∈ S+ homogeneous, together with the natural restriction maps on the over-
laps, give rise to a well-defined quasicoherent sheaf P(M̃) on ProjS, which we call the
induced sheaf of M (or of M̃) on ProjS.

Likewise, let X be a scheme and C
π−→ X a conical fiber space affine over X, with

A = π∗OC the corresponding algebra sheaf. Then, for each Z-graded quasicoherent sheaf F
of A-modules, the induced sheaves P(F|π−1(SpecR)) defined over affine patches SpecR ↪→ X
naturally glue together into a well-defined quasicoherent sheaf P(F) on P(C), called the
induced sheaf of F on P(C). This P is then an additive functor from the category of
Z-graded quasicoherent sheaves of A-modules to the category of of quasicoherent sheaves of
OP(C)-modules.

(The notation P(M̃) is nonstandard — typically, people refer to this sheaf simply as M̃ ,
relying on the fact that they are working in the graded context to distinguish it from the
usual induced sheaf M̃ on SpecS. Since we are taking a perspective in which it is important
to be able to talk about the affine cone SpecS as well as the homogeneous spectrum ProjS,
we adopt the stated convention as a way of distinguishing between these objects.)

Proof sketch. We note first that each Mh does indeed have a natural grading such that
deg m

hk
= degm−k deg h for eachm ∈M , makingMh a graded Sh-module and, in particular,

inducing a (Sh)0-module structure on (Mh)0. The transition maps between Spec(Sh)0 and
Spec(Sh′)0 in ProjS are given by the natural identifications

((Sh)0)h′ deg h

hdeg h′

∼= (Shh′)0 ∼= ((Sh′)0) hdeg h′

h′ deg h

,

and we can see that these induce corresponding gluing isomorphisms

((Mh)0)h′ deg h

hdeg h′

∼= (Mhh′)0 ∼= ((Mh′)0) hdeg h′

h′ deg h

,

which we use to construct our P(M̃). We omit verification of the details. Likewise, the
gluing-together over the scheme X rests on natural identifications between these construc-
tions induced by the gluing isomorphisms between affine patches SpecR of X, which we will
not trouble ourselves to write out in full.

For the additive functoriality, it is enough to observe that all of the affine-patch-wise
operations used are additively functorial, as are the gluing operations used to combine ev-
erything into the final sheaf. We continue to neglect the details; the point is that maps of
modules M induce maps of sheaves P(M̃) and that this process respects the abelian group
structure on module maps, as one would expect, and that the analogous statements hold for
the assignment F 7→ P(F).
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Remark 6. It is natural to wonder whether every quasicoherent sheaf G on P(C) arises in
this way. Certainly, if we let Z be the image of the zero section and q : C \Z → P(C) be the
quotient, we can see that any graded sheaf inducing G should restrict to the pullback sheaf
q∗G on C \ Z; here the grading corresponds to constancy along the (A1

X)
∗-orbits, which are

precisely the fibers of q, and so we see that q∗G is naturally Z-graded simply by virtue of being
a pullback. (Algebraically: If we are working affine-locally on X, so that C = SpecS for some
N-graded ring S, we can see explicitly for each homogeneous h ∈ S+ with G|Spec(Sh)0 =: G̃
that i∗G is given on the corresponding affine open SpecSh of C \ Z by the graded module
G⊗(Sh)0 Sh

∼=
⊕

d∈ZG⊗(Sh)0 (Sh)d.)
It then remains to ask whether there is a quasicoherent sheaf on C extending q∗G. If

i : C\Z ↪→ C is the inclusion, one natural candidate is of course the pushforward sheaf i∗q
∗G;

however, we must recall from Lecture 7 that pushforward does not preserve quasicoherence
in general, and we need extra conditions such as quasicompactness and quasiseparatedness
for this to occur. As an open inclusion, i will be quasiseparated in general, but to obtain
quasicompactness we must require that A be locally finitely generated as an OX-algebra sheaf.

Hence, under nice conditions — such as when A is locally finitely generated in degree 1, so
that P(C) → X is projective — we find that π∗i∗q

∗G is a Z-graded quasicoherent sheaf of A-
modules on X (note that π is qcqs by virtue of being affine, guaranteeing the quasicoherence)
with P(π∗i∗q

∗G) = G.
For a more detailed treatment of this construction, see Section 15.7 of Vakil, as mentioned

above; to understand why Vakil’s approach is the same as ours, see Remark 7 below.

We are now ready to define the tautological bundle. The concept is that, if our affine
cone C is a sub-conical fiber space of a linear fiber space, we can consider for each point of
the projectivized space P(C) the corresponding line through the origin in the appropriate
fiber of C. We make this precise as follows.

Proposition/Definition 5. Let X be a scheme and C
π−→ X a conical fiber space affine

over X, with A the corresponding algebra sheaf on X and Z = V (π∗A+) the image of the
zero section in C, and suppose that A is generated in degree 1. Then the closed subscheme of
C ×X P(C) given by the closure of the graph of the quotient map q : C \ Z → P(C) is a line
bundle over P(C) under the restriction of the natural projection C ×X P(C) → P(C), called
the tautological bundle of C and denoted T(C). Indeed, T(C) is the linear fiber space over
P(C) given by the spectrum Spec+P(A+(1)) of the sheaf on P(C) induced by the irrelevant
ideal sheaf of A, considered with the grading which makes it a graded module generated in
degree zero.

(The notation T(C) is nonstandard, since most authors prefer to talk about locally free
sheaves of rank 1 rather than line bundles in our sense; we will encounter the traditional
notations below, in Definition 7.)

Proof sketch. All of our claims can be decided affine-locally on X, so we reduce to the case
where X = SpecR, A = S̃ for S an N-graded R-algebra generated in degree 1 with S0 = R,
and C = SpecS.

Since S is generated in degree 1, C \Z can be covered by affine open patches SpecSh for
h ∈ S1, and as a consequence the corresponding affine open patches Spec(Sh)0 for such h cover
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P(C) = ProjS. Fix such an h. Then the graph of the quotient map q over SpecSh ⊆ C \ Z
can be viewed as a closed subscheme of the corresponding affine open patch Spec(Sh⊗R(Sh)0)
of C ×X P(C), cut out by the ideal ( g

hd
⊗ 1− 1⊗ g

hd
| d ∈ N, g ∈ Sd). The part of the graph’s

closure in C ×X P(C) lying over Spec(Sh)0 ⊆ P(C) is then precisely the closed subscheme of
Spec(S ⊗R (Sh)0) cut out by the kernel of the natural map

S ⊗R (Sh)0 →
Sh ⊗R (Sh)0

( g
hd

⊗ 1− 1⊗ g
hd

| d ∈ N, g ∈ Sd)
,

which is to say the ideal (g⊗1−hd⊗ g
hd

| d ∈ N, g ∈ Sd) — to verify this, we can observe that
the codomain is isomorphic to Sh, so that our map can be identified with the multiplication
map S⊗R (Sh)0 → Sh, and then work separately in each graded piece to reduce any element
of the kernel to zero modulo the stated ideal.

Thus the part of T(C) lying over Spec(Sh)0 ⊆ P(C) is given by Spec S⊗R(Sh)0

(g⊗1−hd⊗ g
hd

|d∈N,g∈Sd)
∼=

Spec(Sh)0[h], and we can see that the transition maps respect the grading and hence are
moreover linear fiber space isomorphisms, so that T(C) is indeed a line bundle over P(C).
To see that it is Spec+P(S̃+(1)) specifically, we note first that S̃/S+|SpecSh

∼= 0 and hence

the natural inclusion S̃+ ↪→ S̃ restricts to an isomorphism over SpecSh. Indeed, since
h ∈ S+, we can see that (S+)Sh is the unit ideal and we can identify it with (h) ⊆ Sh.
Thus the degree-zero part of (S+)Sh(1) is a free module of rank 1 generated by h, and so

we have isomorphisms Spec+P(S̃+(1))|Spec(Sh)0
∼= Spec(Sh)0[h] ∼= T(C)|Spec(Sh)0 . The result

now follows by observing that the composed identification is compatible with the transition
maps for each line bundle; explicitly, over Spec((Sh)0)h′

h

∼= ((Sh′)0) h
h′

for another h′ ∈ S1,

we can see in both cases that the transition map ((Sh)0)h′
h

[h]
∼−→ ((Sh′)0) h

h′
[h′] is given by

extending the usual gluing isomorphism with the assignment h 7→ h
h′
h′.

Example 10. Let X = SpecC and consider A2
C = SpecC[x, y] as a conical fiber space over

X with the usual scaling action, so that P(A2
C) = P1

C is the space of lines through the origin
in the affine plane. Then T(A2

C) is the closed subscheme of A2
C×C P1

C such that the fiber over
each point of P1

C is the corresponding line. Explicitly, over the affine patch SpecC[ y
x
] giving

the space of non-vertical lines through the origin in the plane, we see from the preceding proof
that T(A2

C) is given by SpecC[x, y, y
x
]/(y − y

x
x); likewise, above the affine patch SpecC[x

y
] of

non-horizontal lines, we get SpecC[x, y, x
y
]/(x− x

y
y).

Exercise 4. Write down explicit chart-wise descriptions of the tautological bundle of A3
C as

a closed subscheme of A3
C ×C P2

C.

Having introduced the tautological bundle arising from a given (suitably well-behaved)
conical fiber space, we now note that our discussion in Section 3 implies that each such
conical fiber space in fact gives rise to countably many line bundles on its projectivization,
the tautological bundles of its Veronese twists. The corresponding sheaves of linear forms
(and, dually, of sections) play an important enough role in projective geometry to be named:

Definition 7. Let X be a scheme and C
π−→ X a conical fiber space affine over X with the

corresponding algebra sheaf π∗OC generated in degree 1. Then the sheaf P((π∗OC)+(1)) of
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linear forms of the tautological bundle T(C) → P(C) is denoted by O(C, 1) and called the
(Serre) twisting sheaf of C.

More generally, for n ∈ Z, we define locally free sheaves O(C, n) of rank 1 on P(C) as
follows:

� O(C, 0) := OP(C).

� For n > 0, O(C, n) := O(C{n}, 1) is the sheaf of linear forms on the tautological
bundle T(C{n}) of the nth Veronese twist of C.

� For n < 0, O(C, n) := O(C,−n)∨ = HomOP(C)
(O(C,−n),OP(C)) is defined to be the

dual of O(C,−n) — that is, the sheaf of sections of T(C{n}).

We call each O(C, n) the nth (Serre) twisting sheaf of C. In situations where C is
understood from context, it is common to drop it from the terminology and notation; that is,
we write O(n) in place of O(C, n).

If F is a quasicoherent sheaf of OP(C)-modules and n ∈ Z is an integer, we define the
nth (Serre) twist of F with respect to C by F(C, n) := F ⊗OP(C)

O(C, n); as before, if C
is understood from context, we may denote this also by F(n).

The algebraic significance of the Serre twisting sheaves and the connection between the
apparently different “Serre twists” of Definitions 6 and 7 are explained by the following
result:

Proposition 3. Let X be a scheme and C
π−→ X a conical fiber space affine over X such that

the corresponding algebra sheaf A := π∗OC is generated in degree 1. Let F be a Z-graded
quasicoherent sheaf of A-modules. Then, for each n ∈ Z, there is a natural isomorphism
P(F)(C, n) ∼= P(F(n)) between the nth Serre twist with respect to C of the sheaf on P(C)
induced by F and the induced sheaf of the nth Serre twist of F itself.

In particular, since OP(C)
∼= P(A), for each n ∈ Z we have O(C, n) ∼= P(A(n)). As a

consequence, we can see for n,m ∈ Z that O(C, n)(C,m) ∼= O(C, n+m).

That is, the algebraic operation of shifting the grading is encoded by the tautological
bundles of the quotients C{n} of C by the groups of nth roots of unity for integers n > 0.
As we might expect, there is also a way to see this information more directly from the
tautological bundle itself:

Remark 7. Let X be a scheme and C
π−→ X a conical fiber space affine over X such that

the corresponding algebra sheaf π∗OC is generated in degree 1. Let ZC ↪→ C and ZT(C) ↪→
T(C) be the zero sections of C and T(C) over their respective bases, so that ZC ∼= X and
ZT(C)

∼= P(C). Then, by the construction of the tautological bundle, we can see that C \ZC ∼=
T(C) \ZT(C) as schemes over P(C); that is, if q : C \ZC → P(C) is the usual quotient map,
we have the following commutative diagram:

C \ ZC T(C) \ ZT(C)

P(C)

∼

q
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Hence the quotient map q depends only on T(C), and so we do not need to remember C
itself to make use of it. Now, if G is a quasicoherent sheaf on P(C), we can see by noting the
direct sum decomposition in affine patches as in Remark 6 and using the prior proposition
that the Serre twists of G can be obtained from q; explicitly, we have

q∗q
∗G ∼=

⊕
n∈Z

G(n).

In particular, if we let i : C \ZC ↪→ C be the inclusion as in Remark 6 and π′ : P(C) → X be
the structure map, we can see by virtue of the fact that π ◦ i = π′ ◦ q is the natural projection
to X that the sheaf π∗i∗q

∗G considered in Remark 6 can also be described by

π∗i∗q
∗G ∼= π′

∗q∗q
∗G ∼=

⊕
n∈Z

π′
∗G(n).

(As noted in Remark 6, this is most relevant in the case where π∗OC is moreover locally
finitely generated, so that π′ is a projective map and each of the sheaves π′

∗G(n) is quasico-
herent.)

The projection T(C) → C arising from our construction of T(C) as a closed subscheme
of C ×C P(C) deserves some special attention; as mentioned in the preceding remark, it is
as isomorphism over the complement of the zero section ZC . Over ZC ∼= X, on the other
hand, we can see that it is given by the natural projection ZT(C)

∼= P(C) → X. That is, we
can think of T(C) as “a copy of C where the zero section has been replaced by the space of
radial directions pointing out from it” (as encoded in our space of “lines through the origin”
P(C)); this is our first encounter with the concept of a blowup, which we will introduce in
full generality next week.

We conclude our discussion of tautological bundles and twisting sheaves by noting that,
in the case of projective n-space over a field, all line bundles in fact arise from the usual
tautological bundle:

Theorem 2. Let k be a field, and n > 0 an integer. Then, if take Pnk to be P(An+1
k ) and

treat the collection of all isomorphism classes of rank-1 locally free sheaves as a group with
multiplication ⊗OPn

k
, the map from Z to this group given by n 7→ O(n) is a group isomorphism.

This is called the Picard group of Pnk . Picard groups of schemes, especially projective
ones, are an important topic in their own right, but we will not discuss them in detail. Note
that our result here is particular to fields; if we replace Spec k by a more general base scheme,
it is no longer guaranteed to hold.

5 Projectivizing Line Bundles

As we have seen, projectivization yields “the space of lines through the origin in each fiber
of the given conical fiber space”. In the case where the conical fiber space in question is a
line bundle, so that each fiber is already a single line, projectivization thus yields the base
space itself:
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Proposition 4. Let X be a scheme and L → X a line bundle over X. Then the natural
projection is an isomorphism P(L) ∼= X and, moreover, this isomorphism identifies the
tautological bundle T(L) → P(L) with L itself, so that the commutative diagram of projections
arising from the usual closed embedding T(L) ↪→ L×X P(L) is as follows:

T(L) P(L)

L X

∼ ∼

Proof. The isomorphism P(L) ∼= X can be observed locally; if we take an affine open
SpecR ⊆ X with a trivialization L|SpecR ∼= A1

R = SpecR[t], we see immediately that
P(L)|SpecR ∼= ProjR[t] ∼= SpecR since (R[t])+ has only one generator, t, and (R[t]t)0 ∼= R.
Since the local projections of P(L) are thus isomorphisms, their transition maps are already
determined by the gluings between different affine patches of X, and so we see that the
projection P(L) → X is an isomorphism globally as well.

Hence we find that the fiber product L ×X P(L) is already isomorphic to L under the
natural projection; to reach our conclusion, it suffices to note (by again working locally and
observing that R[t] → R[t]t has trivial kernel, if you like) that the complement of the zero
section in L is scheme-theoretically dense, so that the inclusion T(L) ↪→ L ×X P(L) is an
equality.

Thus projectivizations of line bundles are entirely uninteresting in their capacity as
schemes over the base space in and of themselves; however, we can exploit the fact that
the base space can be reconstructed in this way to apply the machinery we have devel-
oped thus far in novel ways. For example, we can generalize our notion of vanishing loci of
collections of “functions” on schemes to vanishings of linear forms on arbitrary line bundles:

Definition 8. Let X be a scheme, L → X a line bundle, and ϕ : L → A1
X a linear form.

Then, if Z ↪→ A1
X is the zero section, we define the vanishing locus of ϕ to be the closed

subscheme of X given by the projectivization P(ϕ∗Z) of the inverse image ϕ∗Z := L×A1
X
Z

of the zero section of A1
X and denote it by V (ϕ).

More generally, if we have a collection {ϕα : Lα → A1
X | α ∈ A} of linear forms on line

bundles Lα over X, we define their (common) vanishing locus V (ϕα | α ∈ A) to be the
intersection (in the scheme-theoretic sense of fiber products over X) of the closed subschemes
V (ϕα) of X.

The notion of the vanishing of a linear form on a line bundle gives us a first step toward
the theory of (Cartier) divisors, which provides an algebro-geometric analogue to the study
of zeroes and poles of rational functions from complex analysis. Our definitions here also
admit generalizations in various directions; for example, we can replace A1

X by any conical
fiber space over X and ϕ by any map of conical fiber spaces (in the sense of preserving the
A1
X-action or in the more permissive sense of Proposition-Definition 3), since all we have

really used is the fact that the pullback of the zero section is a sub-conical fiber space of
our line bundle. As a case of special interest, we then have a notion of the scheme-theoretic
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vanishing of a section of a line bundle L, given by the usual identification of sections with
linear fiber space maps A1

X → L; this agrees with the notion of the vanishing of a section
X → L given by pulling back the zero section along the given one. Indeed, for a given section
f of the structure sheaf OX , the vanishing of f in the usual sense of ideal sheaves will agree
with both the vanishing of the corresponding linear form on the trivial line bundle A1

X and
of the corresponding section of A1

X , as we should want.
In another direction, we can see that, for each integer d > 0, the dth Veronese twist

L{d} will also be a line bundle over X, and moreover linear forms L{d} → A1
X correspond

to maps L → A1
X which are conical fiber space maps when twisted by the monoid-with-

zero map A1
X → A1

X induced by t 7→ td as in Proposition/Definition 3. In particular, we
can identify a collection of linear forms on various Veronese twists of L with a collection of
homogeneous sections of the corresponding degrees in the symmetric algebra sheaf SymL(L)
of the sheaf of linear forms on L; the vanishing of this collection of linear forms is then given
by Proj SymL(L)/I for I the homogeneous sheaf of ideals of SymL(L) generated by these
sections. Hence, in the case where we consider only linear forms on Veronese twists of a fixed
L, our notion of the vanishing of a collection of forms readily generalizes to a notion of the
vanishing of any homogeneous sheaf of ideals of SymL(L), not just one which is generated
by globally-defined sections.

For our purposes, vanishing loci of collections of linear forms on a line bundle will be
useful mainly in the context of the following result:

Theorem 3. Let X be a scheme and n ≥ 0 an integer. Then there are natural identifications
between the following sets:

� The set HomX(X,PnX) of maps X → PnX of schemes over X.

� For any scheme S and fixed map X → S, the set HomS(X,PnS) of maps X → PnS
of schemes over S. (Typically, when applicable, we take S to be the spectrum of the
ground field.)

� The set of choices of a line bundle L→ X and n+1 linear forms ϕ0, . . . , ϕn : L→ A1
X

such that V (ϕ0, . . . , ϕn) = ∅, up to isomorphism of line bundles with chosen ordered
lists of linear forms.

Proof sketch. The affine spaces An+1
Y (as Y varies over all schemes) arise as pullbacks of

An+1
Z := SpecZ[x0, . . . , xn], so that An+1

Y
∼= An+1

Z ×Z Y . In particular, since pullback plays
well with composition, we have the usual identification An+1

X
∼= An+1

S ×SX; that is, the trivial
rank-(n + 1) vector bundle on X is the pullback of the one on S. Since projectivization
is a fiberwise operation, this set of facts carries over to projective n-spaces — we have
PnY ∼= PnZ ×Z Y for all schemes Y and hence PnX ∼= PnS ×S X. Thus, for any X-scheme X ′,
the set of X-scheme maps X ′ → PnX is naturally identified with the set of S-scheme maps
X ′ → PnS by the universal property of fiber products, and applying this to X in particular
gives our identification HomX(X,PnX) ∼= HomS(X,PnS). That is, since a map X → PnX over
X — i.e., a section of the natural projection PnX → X — is already “sending each point of
X to a point in the corresponding fiber”, both literally and in the stronger scheme-theoretic
sense, we lose no information by remembering only the map to, e.g., projective space over a
chosen ground field.

19



It now suffices to construct the identification between HomX(X,PnX) and the set of choices
of line bundles with forms described in the theorem statement. On the one hand, we can see
from the identification of the tautological bundle T(An+1

X ) with the spectrum of the sheaf
induced by the irrelevant ideal sheaf in Proposition/Definition 5 that there are linear forms
ξ0, . . . , ξn : T(An+1

X ) → A1
X corresponding to its generators x0, . . . , xn and that these satisfy

V (ξ0, . . . , ξn) = ∅; as such, if ψ : X → PnX is a map of X-schemes, we have automatically a
line bundle ψ∗T(An+1

X ) and linear forms ψ∗ξ0, . . . , ψ
∗ξn with V (ψ∗ξ0, . . . , ψ

∗ξn) = ∅, given by
pulling back the whole picture along ψ.

On the other hand, if we are given a line bundle L and linear forms ϕ0, . . . , ϕn : L→ A1
X

with V (ϕ0, . . . , ϕn) = ∅, we can combine the linear forms into a linear fiber space map
Φ : L → An+1

X simply by letting each form give the corresponding coordinate of An+1
X .

The projectivization of this map, as defined in Proposition/Definition 3, is of the form
P(Φ) : P(L) → P(An+1

X ) (that is, it is everywhere defined on P(L)) by our condition that the
joint vanishing of the chosen forms be empty, and so by Proposition 4 we can regard this
as a map P(Φ) : X → PnX . That P(Φ) depends only on the isomorphism class of our choice
of bundle and linear forms can be verified readily from the functoriality of projectivizations
of conical fiber space maps — note in particular that an isomorphism of line bundles will
induce the identity map on X under projectivization. The argument that this operation
and the preceding one are inverse to one another uses the existence of an induced map
T(Φ) : T(L) → T(An+1

X ); we omit the details.

Though it uses a fair amount of machinery, the image behind this fact is rather simple
— the forms yield a map of our line bundle into the trivial rank-(n+ 1) vector bundle over
X, which gives us a line through the origin in affine space above each point of X, and this
naturally induces a map from X to the space of such lines.

The correspondence between line bundles with chosen sections and maps to projective
space is the starting point for the theory of positivity of line bundles in algebraic geometry. In
particular, if X is a scheme proper over a field k, it is of interest to know whether a given line
bundle L→ X admits a choice of N+1 linear forms for some N such that the corresponding
map X → PNk is a closed inclusion, and such a bundle is called very ample. In practice, one
usually works with the theoretically better-behaved class of bundles L such that the mth
Veronese twist L{m} is very ample for some m > 0; these line bundles are said to be ample.
(As usual, these questions are typically framed in terms of the corresponding sheaf L on
linear forms on L; to define ample bundles, instead of working with the Veronese twists
L{m}, people speak of the tensor powers L ⊗m. Since the objects of study are line bundles,
however, it turns out that L ⊗m is indeed the sheaf of linear forms on L{m}, although the
corresponding statement is certainly not true for quasicoherent sheaves in general or even for
higher-rank vector bundles.) These notions form the basis for a rich and interesting theory,
which we will not discuss further.

We conclude with a particularly important and well-known instance of a closed embedding
given by linear forms on a line bundle:

Proposition/Definition 6. Let k be a field and fix integers n ≥ 0 and d > 0. Then
we can realize Pnk as the projectivization of the dth Veronese twist An+1

k {d} of the usual
affine space; under this construction, the tautological bundle T(An+1

k {d}) comes equipped
with N =

(
n+d
n

)
distinguished linear forms, corresponding to the degree-d monomials in the
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variables x0, . . . , xn which generate the irrelevant ideal cutting out the origin in An+1
k {d}.

In particular, we can see that the common vanishing locus of these linear forms in Pnk is ∅;
moreover, the map Pnk → PN−1

k they define under the correspondence of Theorem 3 is in fact
a closed embedding. This is called the dth Veronese embedding of Pnk .

That is, our quotient An+1
k {d} of the affine space An+1

k by the action of the dth roots of
unity can be embedded in a standard way into the higher-dimensional affine space AN

k as
a closed sub-conical fiber space, and the Veronese embedding arises by projectivizing this
inclusion.

Example 11. In the setting of Example 9, the map of affine schemes corresponding to
the ring map C[u, v, w] ↠ C[u, v, w]/(v2 − uw) ∼= C[x2, xy, y2] induces the 2nd Veronese
embedding P1

C ↪→ P2
C when projectivized.
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