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To finish off the semester, we will introduce what is arguably one of the central objects
of modern algebraic geometry — a conical fiber space which lurks beneath the surface of
many seemingly disparate topics, including birational geometry, intersection theory, local
cohomology, and deformation theory. Of course, developing these applications in detail is
outside our scope — instead, we will discuss the core constructions and give brief explanations
of some of the possible directions one can take them, leaving it to the interested student to
explore these topics further through other sources.

1 The Radial Cone

To understand our main definition, we return to the following situation: Let i : X ↪→ Y be
a closed inclusion of schemes, so that X is cut out in Y by a quasicoherent sheaf I of ideals.
Then we have the following short exact sequence of quasicoherent sheaves on Y :

0→ I → OY → OX → 0

(Here we really mean i∗OX instead of OX , technically speaking — however, since i is an
affine map, we allow ourselves to trim the notation down a little.)

Of course, this gives rise to a corresponding short exact sequence of linear fiber spaces
over Y :

0→ Spec+OX → Spec+OY → Spec+ I → 0

Note that, as usual, we have a change in direction as we pass from algebraic objects to
geometric ones. Our goal will be to examine the geometry of this sequence in more detail,
using the additional machinery we have developed since we last addressed the topic in Lecture
8.

As we do so, it will useful to have a running example for the sake of illustration:

Example 1. Let Y = V (y2 − x2(x + 1)) ⊆ SpecC[x, y] = A2
C be a nodal cubic in the affine

plane. This curve is regular everywhere except the origin, where it crosses itself, creating
a closed singular point. We will take X = V (x, y) ⊆ Y to be this point, endowed with the

*First draft of the TeX source provided by Márton Beke.
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Figure 1: The scheme Y of Example 1, with the subscheme X marked in red. (Y is drawn
in perspective, as a curve in the horizontal plane in three-dimensional space, in anticipation
of the terrible things we are about to do to it.)

standard reduced scheme structure. This situation is illustrated in Figure 1. In this case,
since Y is affine, we can write I = Ĩ for I = (x, y) the maximal ideal at the origin in the
ring R = C[x, y]/(y2 − x2(x+ 1)) of functions on Y .

In our general situation, two of the terms in our short exact sequence are easy to visualize
— Spec+OY is simply the trivial line bundle over Y , and Spec+OX is a closed sub-linear
fiber space which is the trivial line bundle when restricted over X (but not over any larger
subscheme with the same underlying set) and zero elsewhere. This is illustrated for the case
of Example 1 in Figure 2.

The map Spec+OY → Spec+ I, however, presents greater difficulties. Since pullback of
quasicoherent sheaves is not left exact and, correspondingly, pullback of linear fiber spaces
is not right exact, the restriction of Spec+ I over a point p need not be the cokernel of the
inclusion Spec+OX |p ↪→ Spec+OY |p; that is, our short exact sequence of linear fiber spaces
need not be a short exact sequence fiberwise. This can be regarded, in some sense, as a
consequence of Nakayama’s Lemma — since Spec+OX is zero over the open set Y \X, while
its inclusion into Spec+OY restricts over X to an isomorphism of trivial line bundles, the
“fiberwise cokernel” of the inclusion would need to have fiber dimension dropping from 1
over Y \X to 0 over X, a violation of upper semicontinuity.

Now, since restriction of quasicoherent sheaves over open subschemes specifically is exact,
our short exact sequence and the fact that Spec+OX |Y \X is zero give us an isomorphism
Spec+OY |Y \X ∼= Spec+ I|Y \X . That is, Spec+ I is a line bundle — indeed, the trivial one
— over the complement of the closed subscheme X defined by I. Its restriction over X,
on the other hand, can be given on the level of quasicoherent algebra sheaves on Y as
I ⊗OY

OX
∼= I ⊗OY

(OY /I) ∼= I/I2 (again, strictly speaking, since we are thinking of this
as a sheaf on X, we should write i∗(I/I2)). This is to say precisely that Spec+ I|X ∼= NX/Y

is the Zariski normal scheme to X in Y , as defined in Lecture 10 — recall that this captures,
in some sense, the “perpendicular directions to X in Y ”.
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Figure 2: The inclusion of Spec+OX (considered over Y — that is, Spec+ i∗OX) into
Spec+OY in the situation of Example 1. (Here, and in subsequent figures, we further abuse
our beleaguered visual metaphor by truncating the fibers — in this case, we draw closed
intervals in place of lines.)

We examine this behavior in the case of our running example:

Example 2. We continue in the situation of Example 1. Here, since X is a closed point,
the Zariski normal scheme NX/Y is in fact the Zariski tangent space to Y at X. In this case,
this is the same as the Zariski tangent space A2

C to the ambient plane at the origin, since X
is a singular point on the plane curve Y . Hence Spec+ I should have a 2-dimensional fiber
over the origin and a 1-dimensional fiber over every other point.

Since Y is an affine scheme, we can consider our map Spec+OY → Spec+ I on the
level of modules — specifically, it is given by the inclusion (x, y) ↪→ R. Writing e1 for
x and e2 for y, we can obtain an explicit presentation (x, y) ∼= Re1⊕Re2

(ye1−xe2,x(x+1)e1−ye2)
, with

the inclusion map now given by mapping each generator to the corresponding variable in
R — that is, e1 7→ x and e2 7→ y. Taking the symmetric algebras of our modules gives
us R[e1,e2]

(ye1−xe2,x(x+1)e1−ye2)
→ R[e] with e1 7→ xe and e2 7→ ye. The corresponding spectra are

illustrated in Figure 3.
To understand the map between these spaces, we observe that the intersection of Y with

V (x) is set-theoretically the origin — in particular, localizing at x gives the complement

Y \ X. Over this open locus, we can see that Rx[e1,e2]
(ye1−xe2,x(x+1)e1−ye2)

∼= Rx[e1] under the map

e1 7→ e1, e2 7→ e2; this realizes Spec+ I|Y \X as a trivial line bundle, as claimed. The map
from Spec+OY |Y \X ∼= SpecRx[e] then corresponds to the Rx-algebra map Rx[e1] → Rx[e]
given by e1 7→ xe.

Hence the map Spec+OY |Y \X → Spec+ I|Y \X is given by scaling each fiber by x; intu-
itively, as we approach the origin, we are contracting the fibers of the trivial line bundle by
greater and greater amounts. In the “limit”, our map contracts the fiber of the trivial bundle
over X to zero (since the images xe and ye of e1 and e2 are both zero over X, by design),
as one would expect — indeed, by the universal property of the cokernel, this is the unique
map out of the trivial line bundle such that every other such map of quasicoherent linear
fiber spaces over Y contracting the fiber over X to zero factors uniquely through it.
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Figure 3: The spaces Spec+OY = SpecR[e] and Spec+ I = R[e1,e2]
(ye1−xe2,x(x+1)e1−ye2)

in the

situation of Examples 1 and 2. (In the latter case, the necessity of embedding the picture in
three-dimensional space introduces some fictitious self-intersections — hopefully, the correct
interpretation is clear from the fact that Spec+ I is a linear fiber space over Y .)

For the sake of concreteness, we now make some observations in the setting of our ongoing
example. As already mentioned, the fiber of Spec+ I over our point X is the Zariski tangent
space to Y atX; however, our picture in Figure 3 does not make this relationship particularly
clear, and so we illustrate the Zariski tangent space of the node at the origin separately in
Figure 4.

From this image, we can see that, although all of the tangent directions to the affine
plane at the origin X are also “tangent” to Y in the sense of Zariski tangent spaces (as they
indeed must be, since X is a singular point of Y and dimY = dimA2

C − 1), two directions
are very clearly “more tangent” than the others — the “limiting tangent lines” along the
two “local branches” of the curve. (Here we must make generous use of quotation marks,
at least for the time being — as discussed in Lecture 11, the classical notions of limits and
convergence don’t really capture the correct geometric intuitions in the scheme setting if we
apply them naively, and the talk of local branches doesn’t make sense because our curve
consists of a single irreducible component, even if we pass to the germ at the origin. This
latter issue can be surmounted through the machinery of completion, which we will not
discuss this semester.) The remaining directions are, in some sense, artificial — they arise
essentially because the Zariski tangent space is a vector space (i.e., a linear fiber space over
the corresponding closed point) and hence must contain the linear span of the two “actual
tangent directions”.

Relatedly, we can see in Figure 3 that, in the case of our running example, the fiber
over X is its own irreducible component — one which seems to be, again, more an artifact
of the fact that Spec+ I is a linear fiber space than something which really properly arises
from the relative geometry of X and Y . Here we can be more precise about the nature of
this incongruity by examining the map Spec+OY → Spec+ I. Now, this map of linear fiber
spaces is the right-hand nonzero map in a short exact sequence, which is to say that it plays
the same role as a quotient map in the setting of modules. From the module setting, our
expectation is that such maps should be surjective — however, as we have already seen in
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Figure 4: The scheme Y of Examples 1 and 2, with the Zariski tangent space at the closed
point X drawn in the plane in green. Here we also indicate the “limiting” tangent directions
with green lines.

Example 2, this one collapses the fiber of Spec+OY over the origin to the corresponding
point of the zero section of Spec+ I, and in particular the image of the induced map on the
underlying topological spaces does not contain any of the other points of Spec+ I lying in
the fiber over the origin.

As we have remarked in the past, as far back as Lecture 2, there is no good notion of an
“image” of a map of rings or schemes as a scheme. However, in the case of an affine map,
there is a good notion of the closure of its image — that is, the smallest closed subscheme
of the target through which the map factors. Concretely, if the affine map is given as the
(structure map of the) relative spectrum of the quasicoherent OS-algebra sheaf A (for S
the target scheme), then the closure of the image is precisely the subscheme cut out by the
kernel of the sheaf map OS → A giving the algebra structure on A. Maps between linear
fiber spaces being affine, this means that we have a well-defined notion of the closure of
the image of Spec+OY → Spec+ I, and we can see that even this is not all of Spec+ I,
despite the “surjectivity” we might expect from the exactness of Spec+OY → Spec+ I → 0;
because Spec+ I satisfies the categorical properties we should expect from a quotient only
in the context of linear fiber spaces over Y , not Y -schemes more generally, nothing about
this exactness precludes the existence of a proper closed subscheme through which our map
factors, provided it is not itself a linear fiber space.

Hence we have a precise way of distinguishing from the “more natural” parts of Spec+ I
and those which we think of as “artifacts of linearity”; the former will comprise the closure
of the image of the map Spec+OY → Spec+ I and the latter the complement of this closed
subscheme in the whole linear fiber space. Indeed, this turns out to capture, as well, our
notion of the “more tangent” directions depicted in Figure 4, both in the specific case of
our running example and in general. We therefore give this closed subscheme of Spec+ I a
name:

Definition 1. As above, let i : X ↪→ Y be a closed inclusion of schemes, with I the
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corresponding ideal sheaf on Y . Then the quasicoherent OY -algebra sheaf given by

BXY :=
Sym I

ker(Sym I → SymOY )
= im(Sym I → SymOY )

(where the map Sym I → SymOY is the one arising from the OY -module sheaf inclusion I →
OY ; explicitly, under the identification SymOY

∼= OY [t], we then have BXY =
⊕∞

k=0 Iktk ⊆⊕∞
k=0OY t

k = OY [t]) is called the blowup algebra sheaf of X in Y . We will call its relative
spectrum RXY := SpecBXY the radial cone of X in Y .

(The term “blowup algebra sheaf” is reasonably standard, while “radial cone” is not. We
will discuss the motivations for both of them shortly.)

By construction, the radial cone comes equipped with natural maps Spec+OY → RXY ↪→
Spec+ I factoring Spec+OY → Spec+ I, with the latter a closed inclusion, the minimal one
for which such a factorization exists. We can also see that, since the map Sym I → SymOY

preserves the grading, its kernel is a homogeneous sheaf of ideals of Sym I, and so, as the
name would suggest, the radial cone RXY is in fact a closed sub-conical fiber space of
Spec+ I := Spec Sym I, not just a closed subscheme.

Remark 1. In fact, the construction makes it clear that this kernel is generated in degrees
strictly larger than 1, since the map Sym I → SymOY is given in degree 1 by the inclusion
I ↪→ OY . Hence the smallest closed sub-linear fiber space of Spec+ I containing RXY is
Spec+ I itself.

We compute the radial cone in the case of our running example:

Example 3. We continue in the situation of Examples 1 and 2. As noted in Example 2,
the map Sym I → SymOY in this case is given by (the map of quasicoherent sheaves on

the affine scheme Y corresponding to) the R-algebra morphism R[e1,e2]
(ye1−xe2,x(x+1)e1−ye2)

→ R[e]

taking e1 to xe and e2 to ye; its kernel turns out to be the ideal ((x+1)e1
2− e2

2). Hence we
have the factorization

Sym I ↠
R[e1, e2]

(ye1 − xe2, x(x+ 1)e1 − ye2, (x+ 1)e12 − e22)
↪→ SymR,

which gives the factorization Spec+OY → RXY ↪→ Spec+ I after taking spectra. (Note that
here the ring R and the “R” in the notation RXY are unrelated!) The inclusion of the radial
cone RXY into Spec+ I is illustrated in Figure 5.

In particular, the restriction RXY |X of the radial cone will give a closed subscheme of

the Zariski tangent space NX/Y
∼= Spec

( R[e1,e2]
(ye1−xe2,x(x+1)e1−ye2)

⊗R R/(x, y)
) ∼= SpecC[e1, e2],

cut out by the ideal ((x + 1)e1
2 − e2

2) = (e1
2 − e2

2) = ((e1 − e2)(e1 + e2)) of C[e1, e2]. This
is exactly the union of the two “limiting tangent lines”, as depicted in Figure 4.

More generally, we can see that the restriction of the radial cone RXY of X in Y over X
will be a closed subscheme of the Zariski normal scheme NX/Y . As in the case of our running
example, we can think of this as giving the “normal directions” to our subscheme X which
“really arise from the ambient scheme Y ”, rather than being mere artifacts of linearity —
for a perspective on how to make this characterization mathematically precise, see Remark
2. This restriction of the radial cone over the closed subscheme in question is important
enough to have its own name:
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Figure 5: The inclusion of the radial cone RXY into Spec+ I in the situation of Ex-

amples 1, 2, and 3, where it corresponds to the quotient map R[e1,e2]
(ye1−xe2,x(x+1)e1−ye2)

↠
R[e1,e2]

(ye1−xe2,x(x+1)e1−ye2,(x+1)e12−e22)
. (As before, our manner of depicting our schemes in three-

dimensional space suggests more self-intersections than are actually present; in this case, if
we think of the visual representation of RXY as a strip of ribbon, it should meet itself at
only one point, the node of the curve in the zero section.)

Definition 2. As above, let i : X ↪→ Y be a closed inclusion of schemes, with I the
corresponding ideal sheaf on Y . Then we call CXY := RXY |X the normal cone of X
in Y ; concretely, this is the relative spectrum of the associated graded algebra sheaf

grI OY :=
∞⊕
k=0

(Ik/Ik+1)tk = BXY ⊗OY
OX .

(To be precise, since we view this as a conical fiber space over X, we should really refer to
i∗(Ik/Ik+1) and i∗(BXY ⊗OY

i∗OX), or simply i∗Ik and i∗BXY , but we simplify our notations
as usual.)

In the case where X is a single point with the reduced scheme structure, we also call CXY
the tangent cone of Y at X.

As we have already mentioned, the normal cone carries a natural embedding CXY ↪→
NX/Y into the Zariski normal scheme as a closed subscheme — indeed, as a closed sub-conical
fiber space, since the radial cone is a sub-conical fiber space of Spec+ I.

Unlike “radial cone”, the term “normal cone” is entirely standard, and the embedding of
the normal cone into the Zariski normal scheme gives us a clear picture of the normal cone
in terms of the geometry of the inclusion X ↪→ Y , as discussed. To extend this picture to
the whole radial cone, recall that RXY is a line bundle over Y \X; that is, over any point
x of X the fiber (of either cone) is a union of lines through the origin in NX/Y |x giving the
“limiting normal directions to X in Y at x”, whereas over a point y ∈ Y \ X the fiber of
the radial cone is a single line, which we think of as the direction pointing “radially inward
to/outward from X”, so that it makes sense for “limits” of these lines as we approach X to
give “directions normal to X”. This is the motivation for the term “radial cone”. Of course,
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as in the original case of Zariski normal schemes, our “directions” here are directions only
in a fairly abstract sense — nothing in our discussion gives an embedding into the tangent
scheme of Y over any particular base, for example.

Since we are speaking of the fibers of the radial cones as the lines corresponding to certain
directions, it also makes sense to talk about the corresponding spaces of directions themselves
— that is, about the fibers of the projectivization of the radial cone. As it turns out, this
projectivization, like the restriction of the radial cone over X, actually has a widely-used
name:

Definition 3. Let X ↪→ Y be a closed inclusion of schemes. Then we call the projectivization

BlX Y := P(RXY ) = ProjBXY

of the radial cone of X in Y the blowup of X in Y (or of Y at X).

Since the radial cone is a line bundle over Y \ X and a line bundle, as discussed last
week, gives a copy of the base scheme when projectivized, the structure map BlX Y → Y is
an isomorphism over Y \ X. On the other hand, we can see that the restriction over X is
exactly the projection P(CXY )→ Y of the projectivized normal cone (which we typically call
the exceptional divisor when we regard it as a subscheme of the blowup), giving the space
of limiting normal directions to X over each point. That is, we can think of the blowup
operation as follows: We start with Y , remove X from it, and install the projectivized
normal cone P(CXY ) in its place, gluing Y \X to this space according to the limiting radial
directions.

We illustrate this in the case of our running example:

Example 4. We continue in the situation of Examples 1, 2, and 3. By our computation of
the radial cone in Example 3, the blowup of our nodal cubic Y at the point X will be given
by

BlX Y = Proj
R[e1, e2]

(ye1 − xe2, x(x+ 1)e1 − ye2, (x+ 1)e12 − e22)
.

Since the zero section of the radial cone in this case is cut out by the ideal (e1, e2), we can
compute this projectivization by considering only the two affine patches given by the non-
vanishing loci of e1 and e2. However, since (x+1)e1

2 = e2
2, we can see that inverting e2 will

also create an inverse, (x+ 1)e1e2
−2, for e1 — that is, the localization at e2 factors through

the localization at e1, and so the non-vanishing locus of e2 is contained in that of e1. As
such, the whole blowup will itself be affine, given by

BlX Y = Spec

(
R[e1, e2]e1

(ye1 − xe2, x(x+ 1)e1 − ye2, (x+ 1)e12 − e22)

)
0

;

note in particular that the structure map of the blowup in this case is both projective and
affine, hence finite. Writing λ := e2

e1
, we then have

BlX Y = Spec
R[λ]

(y − xλ, x(x+ 1)− yλ, (x+ 1)− λ2)
= Spec

C[x, y, λ]
(x− (λ2 − 1), y − λ(λ2 − 1))

,
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Figure 6: The radial cone of X in Y and its projectivization, the blowup BlX Y of X in
Y , in the situation of Examples 1, 2, 3, and 4. In the right-hand picture, we illustrate the
blown-up curve in blue and draw arrows illustrating the projection to the original nodal
cubic in light blue. (Note that the blowup is nonsingular in this case, even though it passes
over itself when drawn in perspective.)

which is isomorphic to the affine line A1
C = SpecC[λ]. Hence we can see that the structure

map of the blowup is given by the C-algebra map C[x,y]
(y2−x2(x+1))

→ C[λ] taking x to λ2 − 1 and

y to λ(λ2 − 1) in this case.
The geometric picture is illustrated in Figure 6. Here the blowup turns out to provide

a parameterization of our original nodal curve Y , which is mostly one-to-one — the fiber
over the point X at which we blew up, however, consists of two points, one for each of the
limiting directions along which we can approach it in Y . (Equivalently: One for each of the
lines through the origin in the tangent cone CXY = SpecC[e1, e2]/(e12 − e2

2) we computed
in Example 3.)

(Note that, although the blowup of Y at X in this case turns out to be nonsingular,
blowups of singular schemes can remain singular in general. We will discuss the relationship
between blowups and singularities further in Section 2.)

Our discussion thus far has made heavy use of informal notions of “limiting behavior”
which, as mentioned, are not borne out in the literal topology of our schemes’ underlying
spaces. As we saw in Lecture 11, the way to make such “convergence-theoretic” concepts
precise in the setting of schemes is usually to phrase them in valuative terms, which is
possible here (at least in nice cases):

Remark 2. As above, let i : X ↪→ Y be a closed inclusion of schemes, with I the correspond-
ing ideal sheaf on Y . Suppose further that Y is locally Noetherian, so that P(Spec+ I)→ Y
and BlX Y → Y are projective maps. Let K be a field with a discrete valuation v, so that the
spectrum SpecOv of the corresponding discrete valuation ring is a nonsingular curve germ,
and suppose we have a map µ : SpecOv → Y which does not factor through our inclusion
i : X ↪→ Y — that is, µ gives a parameterized curve germ in Y which is not contained in X.
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BlX Y P(Spec+ I)

SpecOv Y
µ

Now, since µ does not factor through the closed subscheme X, the generic point SpecK of
SpecOv must be sent to a point of Y \X. Since both Spec+ I and RXY are line bundles over
Y \X (and, indeed, the inclusion RXY ↪→ Spec+ I is an isomorphism over this locus), their
projectivizations’ restrictions over Y \X map to it isomorphically and so we can compose with
the inverse of this isomorphism to obtain a map SpecK

ω−→ BlX Y |Y \X = P(Spec+ I)|Y \X
lifting µ|SpecK:

SpecK BlX Y P(Spec+ I)

SpecOv Y

ω

µ

∃!ω̄

Since projective maps are proper, we can then see that µ lifts to a unique map ω̄ :
SpecOv → BlX Y by the valuative criterion; if µ does not factor through the inclusion of
Y \X into Y , so that µ defines a parameterized curve germ set-theoretically meeting X only
at its closed point, we can see that the image of the closed point under ω̄ will be a point of
the projectivized normal cone P(CXY ), and we can think of this (or the corresponding line
through the origin in CXY ) as the “limiting normal direction along the curve parameter-
ized by µ”. This makes sense of our claim that blowing up amounts to replacing X by its
projectivized normal cone with a gluing given by the limiting radial directions.

Likewise, our characterization of the normal cone CXY as the subspace of NX/Y given
by the normal directions which are actually attained can now be understood in these terms.
Since the structure map P(Spec+ I) → Y is proper, we can see that we could have taken ω̄
as a map to P(Spec+ I), even before the defining the blowup — however, by the uniqueness
of lifts guaranteed by the valuative criterion, we can see that this lift of µ is necessarily the
composition of our original ω̄ : SpecOv → BlX Y with the inclusion BlX Y ↪→ P(Spec+ I),
and so we find that all the points of P(NX/Y ) which are actually “limits of radial directions
along curves” in this sense must already lie in P(CXY ).

Our valuative picture is not perfectly comprehensive, however — in particular, maps from
the nonsingular curve SpecOv to a scheme S necessarily factor through the reduction Sred,
so our discussion above is blind to all nonreduced behavior. Hence we cannot say in general
that, e.g., the blowup is the smallest closed subscheme of P(Spec+ I) through which all lifted
maps from curve germs factor in this way, since this may instead be the smaller scheme
(BlX Y )red. Nevertheless, the valuative criterion offers a reasonable first step in making our
intuitions about limiting behavior precise.

We conclude our initial discussion by noting that, as mentioned last week, the tautological
bundle of conical fiber space can be regarded as the blowup of the conical fiber space itself
at the zero section:
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Proposition 1. Let X be a scheme and C
π−→ X a conical fiber space affine over X, with A

the corresponding algebra sheaf on X and Z the image of the zero section in C, and suppose
that A is generated in degree 1. Then T(C) ∼= BlZ C as schemes over C.

Proof sketch. As usual, we work affine-locally on X, taking X = SpecR, A = S̃ for S an
N-graded R-algebra generated in degree 1 with S0 = R, and C = SpecS. Then the blowup
algebra sheaf of Z in C is the sheafification of the S-algebra

⊕∞
k=0(S+)

ktk.
We construct a map BlZ C → T(C) as follows. First observe that there are two natural

maps S →
⊕∞

k=0(S+)
ktk we can consider; the first, corresponding to the typical structure

map of the radial cone, takes S isomorphically to the degree-zero part (S+)
0t0 ∼= S, while the

second is given by h 7→ tdh for each d ∈ N and h ∈ Sd. Observe that this latter map is degree-
preserving; indeed, we can see that it arises by factoring the monoid-with-zero multiplication
A1

C → C through the natural map A1
C
∼= Spec+ S → RZC given by the module inclusion

S+ ↪→ S. Geometrically, the corresponding map RZC → C is then given away from Z by
mapping the fiber of RZC over each point to the corresponding line through the origin in
C; over Z, it maps each line through the origin in the normal cone CZC (Note that here
the two “C”s refer to different things!) to the line through the origin in C which gives the
corresponding normal direction under the process discussed in Remark 2. That is, this map
is exactly the one which sends each “abstract radial line” in RZC to the A1

R-orbit in C which
realizes it.

By combining these two maps in the order given, we obtain from the universal property
of the fiber product a single map RZC → C ×X C which is moreover a map of conical fiber
spaces in the sense of commuting with the monoid-with-zero actions, where we consider the
product as a conical fiber space over C using the projection to the first factor. Indeed, we
can see by considering the corresponding algebra quotients that the pullback along this map
of the zero section C ×X Z is exactly the zero section of RZC, and so we can projectivize to
obtain a corresponding map BlZ C → C ×X P(C). The result now follows by observing that
the given algebra map is surjective and so the map of schemes is a closed inclusion; we can
verify chartwise that the ideal sheaf cutting it out is exactly the one used to define T(C).

Our method of proof here provides some further support for our intuition for RXY in
terms of radial directions — in this case, the notion of a “direction radiating outward from
the zero section” can be made very precise using (the appropriate map of tangent schemes
induced by) the A1-action, and, as discussed, our map from the radial cone then takes each
abstract radial line to the A1-orbit realizing it.

2 Some Applications of Normal Cones and Blowups

Explicit discussion of radial cones per se is fairly rare — so much so, as mentioned, that
there is no standard name for them — but the normal cones and blowups we obtain from
them are ubiquitous in algebraic geometry. Here, without necessarily going into too much
detail, we survey some significant concepts and subfields which make use of these objects.
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2.1 Multiplicity

The first of these requires the notion of the degree of a closed embedding into Pn
k (for k a

field and n ≥ 0 an integer), which we left out of our discussion of projective space last week.
We will not go into the machinery required to cover this concept in detail — suffice it to say
that it is a numerical quantity giving, in an appropriate sense, the number of points in the
vanishing of dimX generically chosen k-linear combinations of the linear forms defining the
embedding map and that this generalizes the degree of the defining equation in the case where
our closed subscheme is cut out by a single homogeneous polynomial. For our purposes, the
interesting thing about this construction is that it allows us to obtain numerical information
about the structure of an arbitrary locally Noetherian scheme at a given point:

Definition 4. Let X be a locally Noetherian scheme and x a point of X where the local
dimension of X is positive. By replacing X with SpecOX,x as necessary, we can suppose
that x is, in particular, a closed point of X. Then the tangent cone CxX of X at x is by
definition a closed subscheme of the Zariski tangent space Nx/X of X at x; by projectivizing,
we obtain a closed embedding P(CxX) ↪→ P(Nx/X) ∼= Pn

κ(x) for some integer n ≥ 0. We then
define the multiplicity of X at x to be the degree of this embedding.

This provides a very coarse quantification of the extent to which X is singular at x; in
nice circumstances, for example, it turns out to be true that x is a singular point of X if and
only if the multiplicity of X at x is larger than 1. Multiplicity can thus be a valuable starting
point in, e.g., classification results for singularity germs satisfying specified conditions.

2.2 Birational Geometry and Resolution of Singularities

Our second application deals with partially-defined maps between schemes — that is, “maps”
which are defined only on, say, a dense open subset of their domains; in some circumstances,
it can be more useful to work with these than with maps in the more traditional sense. Last
week, for example, we saw that a map C → C ′ of conical fiber spaces over a given base
scheme may not induce a corresponding map P(C) → P(C ′) of projectivizations — rather,
the induced map is defined only on the complement in P(C) of the projectivization of the
pullback of the zero section of C ′. Hence, so long as we consider only conical fiber space
maps which do not map any irreducible component of the source into the zero section of the
target, we can work in the following setting:

Definition 5. Let X and Y be schemes. The collection of rational maps from X to
Y is the set of pairs (U, f) such that U is a (set-theoretically) dense open subscheme of
X and f : U → Y is a map of schemes, modulo the equivalence relation which identifies
(U, f) and (V, g) if there is some (set-theoretically) dense open W contained in U ∩ V such
that f |W = g|W . (If we use scheme-theoretic density instead of set-theoretic, we obtain
the notion of a pseudo-morphism from X to Y ; in general, rational maps are most often
studied in settings where the schemes in question are assumed to be reduced, so that these
two definitions coincide.) We denote a rational map by f : X 99K Y .

In general, it may not be possible to compose two rational maps and obtain a third ra-
tional map, since the pullback of a dense open subscheme along a given map of schemes is
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not guaranteed to be dense. There are several ways to address this issue, in varying levels
of generality, but for simplicity we proceed as follows: Further require that X and Y be ir-
reducible and call a rational map f : X 99K Y dominant if it sends the generic point of X
to that of Y — since the generic point is contained in every dense open, this property is in-
dependent of the chosen representative. (Equivalently: The set-theoretic image of any/every
representative of f is dense in Y .)

We can then consider the category where the objects are, say, integral schemes and the
morphisms are dominant rational maps. Invertible maps in this category are called bira-
tional maps, and integral schemes which are isomorphic to each other in this category are
often said to be birationally equivalent, or simply birational, to one another.

Such maps are called “rational” by reference to the case of, for example, maps A1
C → A1

C;
in this setting, “rational maps” in the sense defined above are given by rational functions
in the traditional sense of ratios of complex polynomials. More generally, if R is a domain,
rational maps from SpecR to the affine line can be identified with elements of the field of
fractions of R.

The study of, say, integral finite-type separated schemes over a field up to birational
equivalence is called birational geometry. For example, a very famous and longstanding
problem in this area is to find a distinguished representative for each birational equivalence
class of such schemes which has, in some technical sense, the least complicated structure
possible — this project is called the minimal model program.

For us, the relevance of such questions stems from the following observation: If we blow
up an integral scheme at any proper closed subscheme, the structure map of the blowup
will be birational (in the sense that it defines an invertible map in the rational category
defined above — equivalently, it is an isomorphism over an open dense subscheme of the
target). Indeed, it turns out that, at least in nice circumstances, all birational maps arise
from sequences of blowups in an appropriate sense; hence, in practice, birational geometry
is in large part the study of blowups of integral finite-type separated schemes.

Of particular importance, at least from the perspective of a singularity theorist, is the
existence (in nice cases) of the birational maps called resolutions of singularities, originally
due to Hironaka:

Theorem 1. Let X be an integral separated scheme of finite type over a field k of character-
istic zero. Then there exists a proper map π : X̃ → X of k-schemes such that π is birational
and X̃ is nonsingular.

Indeed, Hironaka proved that this map can be taken to be the composition of the structure
maps of a sequence of blowups with certain specified properties; we omit the details. In
general, there is no particularly canonical choice of a resolution of singularities for a given
X; nevertheless, many concepts in singularity theory can be defined by reference to the
structure of a resolution of the singularity under consideration, provided one proves that
the relevant statements are independent of the choices made. For example, the definitions
of rational singularities, Du Bois singularities, canonical singularities, and their assorted
generalizations and hangers-on, which provide various structural constraints on the failure
of regularity, are of this flavor.
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Intriguingly, the existence of such resolutions over fields of positive characteristic remains
open in general. (At least to appearances — there are some latter-day claims by Hironaka
and others to have resolved1 the issue, but at present none of them seems to have been
generally accepted as correct.) It is, however, known that the corresponding result for
arbitrary schemes is false.

2.3 Regular Embeddings and Related Notions

In Lecture 5, we introduced the notion of a regular point of a locally Noetherian scheme —
that is, one where the scheme locally “looks like a manifold” in the sense that the dimension
of its Zariski tangent space is the same as its local dimension. Thinking of the tangent cone
as giving the tangent directions within the Zariski tangent space which are actually realized,
as discussed, we should expect in this case that the tangent cone will be equal to the entire
Zariski tangent space; this can be shown by means of the following result, which we will not
prove for now:

Proposition 2. Let X ↪→ Y be a closed inclusion of schemes. Then, for each point x ∈ X,
if we regard x also as a point of CXY by identifying X with its image under the zero section,
we have dimx CXY = dimx Y .

The claimed equality at a regular point of a locally Noetherian scheme then follows
because affine n-space over the residue field is integral and so has no proper closed subschemes
of the same dimension. Conversely, if we are given a point in a locally Noetherian scheme
such that the tangent cone is a linear fiber space over the residue field, Remark 1 will
guarantee that in fact it is equal to the Zariski tangent space and so, by our dimensionality
result, the scheme is regular at the point in question. In sum, we have the following result:

Proposition 3. Let x be a point in a locally Noetherian scheme X. Then X is regular at x
if and only if CxX ∼= An

x for some n ≥ 0. In this case, dimxX = n and Nx/X = CxX.

Thus we can express regularity in terms of the tangent cone. Since we have also developed
more general notions of the Zariski normal scheme and the normal cone, though, we can also
generalize our original question (“At which points does a scheme look like a manifold?”)
by giving a relative version: Which inclusions of schemes look like inclusions of manifolds?
That is, if we have an inclusion of one possibly singular scheme into another, under what
circumstances should we expect the relative behavior to be analogous to that of an embedding
of manifolds?

This gives rise to the following definition:

Definition 6. Let i : X ↪→ Y be a closed inclusion of locally Noetherian schemes and k ≥ 0
an integer. We say that i is a regular embedding of codimension k if any of the following
equivalent conditions holds:

� CXY is a vector bundle of rank k.

� codimY X = k and NX/Y is a vector bundle of rank k.

1Look, the important thing is that I think I’m funny.
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� (For those who have seen regular sequences:) For each point x ∈ X, the kernel of the
natural surjection OY,x ↠ OX,x is generated by a regular sequence of length k.

(From the conditions, it is again clear that in this circumstance we will have NX/Y =
CXY .)

This is to say that, just as regular points are those at which the tangent behavior matches
that of manifolds in the sense that the tangent space has the correct dimension and all tangent
directions are actually attained, regular embeddings are those such that the normal behavior
matches that of an embedding of manifolds — the Zariski normal scheme is a vector bundle
of the correct rank, and all of these normal directions are actually attained.

Many algebro-geometric constructions — e.g., the theories of canonical bundles of schemes
and characteristic classes of vector bundles — deal primarily with nonsingular schemes, at
least classically; similarly, there are some concepts which apply most readily to regular
embeddings. Intersection theory, for example, concerns itself with enumerative questions
like the problem of Apollonius mentioned at the outset of Lecture 1; the approach requires
a robust notion of the “multiplicity with which two subschemes of some ambient scheme
intersect each other” (creatively called their intersection multiplicity), and this turns out
to be most feasible in the situation where at least one of them is regularly embedded.
Essentially, one can think that a good notion of intersection multiplicity should be defined
so as to respect small perturbations in some sense, and in order for the notion of “small
perturbations” of a given subscheme to be well-behaved it is necessary that the directions
normal to it in the ambient scheme have a manageable structure as well.

Although they are more typically stated in algebraic language, in terms of the afore-
mentioned regular sequences, the following notions — which are extremely important and
commonly used in algebraic geometry — are essentially concerned with regular embeddings,
at least in the local Noetherian setting where they are most often considered:

Definition 7. Let (R,m) be a Noetherian local ring and set Y := SpecR. Then, for any
closed subscheme X of Y , we define the depth of X in Y to be

depthY X := max{codimY X ′ | X ′ ⊇ X a regularly-embedded closed subscheme of Y }.

If depthY X = codimY X for every such X, we say that R is a Cohen-Macaulay ring;
more generally, we say a locally Noetherian scheme is Cohen-Macaulay if the local ring at
every point is Cohen-Macaulay.

It turns out that every nonsingular scheme is Cohen-Macaulay, and indeed that Cohen-
Macaulay schemes retain the properties of nonsingular schemes needed for many concrete
applications; hence the class of such schemes gives a reasonable setting where intuitions from
differential geometry often remain applicable without being so stringent as to exclude the
possibility of singularities entirely.

Relatedly, attempts to homologically measure the failure of regularity (again, typically
framed more in terms of sequences than embeddings) lead to the theory of Koszul complexes,
and this in turn provides one entry point for the study of local cohomology, an algebro-
geometric analogue to certain relative cohomology groups appearing in algebraic topology.
Such considerations are far beyond our present scope, but yield the following noteworthy
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interpretation of Cohen-Macaulay schemes: These are the algebro-geometric analogues of
the locally conical spaces whose links have cohomology concentrated in a single degree, a
generalization of the class of homology manifolds. (Depending where you’re coming from,
this may or may not mean anything to you — either way is fine.)

We conclude our discussion of regular embeddings with an application more pertinent
to what we have learned thus far — namely, the universal property of the blowup. Given a
closed subschemeX of a locally Noetherian scheme Y , we obtain the blowup BlX Y essentially
by separating all of the limiting normal directions to X in Y at each point; hence, we
should expect that there is a unique normal direction at each point of the closed subscheme
E := X ×Y BlX Y ∼= P(CXY ) of the blowup given by pulling back X. Indeed, this is true:
The closed inclusion E ↪→ BlX Y is a regular embedding of codimension 1, which is to say
exactly that its normal cone CE BlX Y is a line bundle, or equivalently that the radial cone
RE BlX Y is. (For this latter reason, E can be realized as the vanishing locus of the natural
section A1

BlX Y
∼= Spec+OBlX Y → RE BlX Y , hence of the corresponding linear form on the

dual line bundle, and so the “exceptional divisor” E is indeed a divisor.) As one might
expect, the structure map of the blowup is universal among maps with this property:

Proposition 4 (universal property of the blowup). Let Y be a locally Noetherian scheme and
X ↪→ Y a closed inclusion. Then, for any locally Noetherian scheme Z and map ϕ : Z → Y
such that the closed inclusion X ×Y Z ↪→ Z is a regular embedding of codimension 1, ϕ
factors uniquely through the structure map of the blowup of Y at X:

X ×Y Z Z BlX Y

X Y

regular

codim 1

ϕ

∃!

(An appropriate modification of this result will remain true without the Noetherianity
hypotheses, but we won’t get into it.)

3 A Glimpse of Flatness

We can also use the normal cone to make sense of the following important and ubiquitous
definition, originally due to Serre:

Definition 8. A ring map R → S is said to be flat if − ⊗R S is an exact functor on the
category of R-modules — that is, for any short exact sequence

0→ A→ B → C → 0

of R-modules,
0→ A⊗R S → B ⊗R S → C ⊗R S → 0

remains exact. (Recall that exactness on the right is automatic, so the key requirement is
that A⊗R S → B ⊗R S remains injective.)

A map ϕ : X → Y of schemes is called flat if any of the following equivalent conditions
holds:
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� There are compatible affine open covers of X and Y such that the induced ring maps
are all flat.

� For every pair of affine opens SpecR ⊆ Y and SpecS ⊆ ϕ−1(SpecR), the induced ring
map R→ S is flat.

� For every point x ∈ X, the induced map OY,ϕ(x) → OX,x of ring maps is flat.

� The pullback functor ϕ∗ from the category of quasicoherent sheaves on Y to the category
of quasicoherent sheaves on X is exact.

From an algebraic perspective, the advantages of working with maps of this type are
clear; geometrically, however, their significance is not immediately obvious. To make sense
of it, we first note the following:

Proposition 5. Let ϕ : X → Y be a map of schemes and Z ↪→ Y a closed inclusion. Then
there is a natural induced map from the radial cone of ϕ−1(Z) in X to the radial cone of Z
in Y commuting with the natural projections:

Rϕ−1(Z)X RZY

X Y
ϕ

Moreover, the corresponding map Rϕ−1(Z)X → X×Y RZY is a closed inclusion of conical
fiber spaces which is an isomorphism over X \ ϕ−1(Z).

Proof sketch. We verify this in the case where X and Y are both affine. Then ϕ is given by
a ring map f : R → S and Z is cut out in Y = SpecR by some ideal I ⊆ R, while ϕ−1(Z)
is cut out in X = SpecS by J := IS, so that the blowup algebras of Z in Y and ϕ−1(Z) in
X are given by R[It] ⊆ R[t] and S[Jt] ⊆ S[t] respectively. Hence the claimed map on radial
cones is given by the natural extension R[It] → S[Jt] of f which takes each at ∈ It to the
corresponding element f(a)t ∈ Jt.

To see the claim that the map to the fiber product is a closed inclusion, it is enough to
note that S⊗RR[It]→ S[Jt] is a surjection by virtue of the fact that any set of generators for
I will be sent by f to a set of generators for J = IS. Finally, the claim about the restriction
over the complement of ϕ−1(Z) holds since, for any g ∈ I, the restriction of the map on
radial cones over SpecRg ⊆ SpecR is given by the usual map Rg[t]→ Sf(g)[t] induced by f
and hence we obtain the identity map Sf(g)[t] → Sf(g)[t] after factoring through the tensor
product.

Thus, in particular, we find at each point z of the pullback ϕ−1(Z) of our closed subscheme
Z of Y to X that the union Cϕ−1(Z)X|z of the normal directions to ϕ−1(Z) is a closed
subscheme of the union CZY |ϕ(z) of the normal directions to Z in Y at the corresponding point
of Z. Note also that our map Rϕ−1(Z)X → RZY behaves well with respect to projectivization
and that the map Blϕ−1(Z) X → BlZ Y thus induced is precisely the one given by applying the
universal property of BlZ Y → Y given in Proposition 4 to the natural map Blϕ−1(Z) X → Y .

We are now ready to give a geometric interpretation of flatness, at least in the locally
Noetherian case:
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1 1

Figure 7: The (non-flat) inclusion of a point into a line discussed in Example 5; in the version
on the right, the tangent cone to the line at the origin and the normal cone of the fiber over
this point are superimposed in green.

Proposition 6. Let ϕ : X → Y be a map of locally Noetherian schemes. Then ϕ is flat if
and only if, for every point y ∈ Y , the natural closed inclusion Cϕ−1(y)X ↪→ ϕ−1(y)×y CyY
is an isomorphism.

(If y is a non-closed point, we make sense of these expressions by working in SpecOY,y

instead of Y and in X ×Y SpecOY,y instead of X, so that y becomes closed; for points which
are already closed, this replacement does not affect the resulting normal cones.)

Thus to say that a map is flat is to say that, at every point of the source, “the normal
directions to the fiber it is contained in are precisely the tangent directions to the target
at the point it is mapped to”. (As usual, the subtleties arising from non-reduced behavior
compel us to maintain a bit of ironic distance from this statement.)

As a basic non-example, we have a typical closed inclusion:

Example 5. The inclusion A0
C ↪→ A1

C of the origin into the affine line over C is not flat.
Geometrically, we can see this by observing that the tangent cone to A1

C at the origin (or any
other closed point) is itself an affine line, while the normal cone to a single point in itself is
again a point; this situation is depicted in Figure 7. Algebraically, this map corresponds to
the map of C-algebras C[t]→ C given by t 7→ 0; the tangent cone at the origin in the target
is then given by Spec gr(t) C[t] = SpecC[e] for e the equivalence class of t in (t)/(t)2, while
the normal cone to the fiber over this point in the source is Spec gr(0)C = SpecC; we can
then see that the induced map Spec(C⊗C C[e])→ SpecC is not an isomorphism.

On the other hand, every open inclusion is flat; we give one example here to illustrate
the intuition.

Example 6. The inclusion A1
C \ A0

C ↪→ A1
C of the complement of the origin into the affine

line over C is flat. If we consider a closed point p of the line other than the origin, we can
see that the inclusion is locally an isomorphism near p, so the normal cone to the fiber is
simply the tangent cone again. Algebraically, our map is given by C[t] → C[t]t and such a
point is cut out by the ideal (t− a) of C[t] for a ∈ C∗; the induced map on tangent cones is
then given by the identity map from gr(t−a) C[t] = C[e] to gr(t−a)C[t]t = C[e], where e is the
equivalence class of t− a in (t− a)/(t− a)2 in each case. This is illustrated in Figure 8.
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1 1

Figure 8: The (flat) inclusion of an open subset of the affine line discussed in Example 6; in
the version on the right, the tangent cone to the line at a typical point and the normal cone
of the fiber over this point are superimposed in green.

Over the origin o, on the other hand, the situation is as follows. The corresponding fiber
of our map is now empty, so its normal cone in the domain is C∅(A1

C \ A0
C) = ∅. Now, the

tangent cone to the affine line itself at o is another affine line CoA1
C
∼= A1

C; we must verify the
equality of the fiber’s normal cone with the product ∅ ×o CoA1

C of the fiber with this tangent
cone. Since the fiber product of anything with the empty scheme is empty, this equality holds.
Algebraically, since o is cut out by the ideal (t), this is just to say that gr(t) C[t]t = gr(1)C[t]t
and C[t]t/(t)C[t]t ⊗C[t]/(t) gr(t) C[t] = C[t]t/(1)⊗C gr(t) C[t] are both zero.

Finally, our map becomes an isomorphism if we localize at the generic point, so we can
see that here we have an isomorphism of tangent cones as well.

Our first two examples have been inclusions, so that the fiber over a given point of the
domain is either empty or again a point; of course, we can also consider maps with more
exciting fibers:

Example 7. The standard projection π : A2
C → A1

C to the first coordinate is flat. Al-
gebraically, this map is given by the usual inclusion C[x] ↪→ C[x, y]; each closed point p
of A1 will then be cut out by the ideal (x − a) for some a ∈ C. As usual, the tangent
cone to A1

C at this point is then given by Spec gr(x−a) C[x] = SpecC[e] for e the equivalence
class of x − a in (x − a)/(x − a)2; likewise, the normal cone to the fiber over p in A2

C is
Spec gr(x−a) C[x, y] = Spec((C[y])[e]), and the induced map Cπ−1(p)A2

C → CpA1
C is given by

the C-algebra map C[e]→ (C[y])[e] ∼= C[e, y] taking e to e. Since the map π−1(p)→ p is the
one corresponding to the usual map C→ C[y] and the projection Cπ−1(p)A2

C → π−1(p) corre-
sponds to the inclusion C[y] ↪→ C[e, y], we can then see that Cπ−1(p)A2

C → π−1(p)×p CpA1
C is

given algebraically by the C-algebra map C[y]⊗C C[e] ∼= C[e, y]→ C[e, y] taking e to e and y
to y. This is indeed an isomorphism, so the normal cone to the fiber has the desired product
structure. This situation is illustrated in Figure 9.

If we let η be the generic point of A1
C, we have SpecOA1

C,η
= SpecC(x) = η and

A2
C ×A1

C
SpecOA1

C,η
∼= SpecC(x)[y]; since the whole domain of the map from the latter to

the former induced by π is a single fiber, the normal cones involved are trivial and so the
product condition follows automatically.

Example 8. Let Y := A1
C be the affine line and X := V (x(y − x2)) ⊆ A2

C the union of the
y-axis with a parabola in the affine plane. Let ϕ : X → Y be the restriction of the usual
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1 1

Figure 9: The (flat) projection of the affine plane to the affine line discussed in Example 7;
in the version on the right, the tangent cone to the line at a typical point and the normal
cone of the fiber over this point are superimposed in green.

projection onto the first coordinate, so that the corresponding ring map is the standard map
C[x]→ C[x, y]/(x(y − x2)). Then ϕ is not flat.

If p is a closed point of Y other than the origin, this fact is not evident; indeed, let-
ting (x − a) for a ∈ C∗ be the ideal cutting out p as in our prior examples, we have
the usual isomorphism CpA1

C
∼= SpecC[e], while ϕ−1(p) = SpecC[x, y]//(x(y − x2), x −

a) ∼= SpecC[y]/(a/(y − a2)) ∼= SpecC and Cϕ−1(p)X = Spec gr(x−a) C[x, y]/(x(y − x2)) ∼=
SpecC[e, y]/(a(y − a2)) ∼= SpecC[e]. Hence, as in Example 6, Cϕ−1(p)X ∼= ϕ−1(p) ×p CpY ,
so p does not witness the failure of flatness.

However, if we let o ∈ Y be the origin, then we again have CoY ∼= SpecC[e], but ϕ−1(o) =
SpecC[x, y]/(x(y − x2), x) ∼= SpecC[y] and Cϕ−1(o)X = Spec gr(x) C[x, y]/(x(y − x2)) ∼=
SpecC[e, y]/(ey). Thus the closed inclusion Cϕ−1(o)X ↪→ ϕ−1(o) ×o CoY is given by the
standard quotient map from C[y] ⊗C C[e] ∼= C[e, y] to C[e, y]/(ey), so the normal cone to
the fiber does not have the desired product structure; instead, we see that there is a normal
direction corresponding to the tangent direction in the target only at the point where the
vertical line meets the parabola, and this direction is missing at every other point of the fiber.
(A technical note: This way of presenting things might tempt one to say that this map is
“flat at the point where the parabola meets the line”, but this is not true; the upshot is that,
even locally around this point, the normal cone to the fiber does not have the correct product
structure, even though we have the requisite normal direction at the point itself.)

These situations are illustrated in Figure 10.

This concludes our foray into the geometric intuitions for flatness. It should be noted
that this is far from a complete treatment of the subject; in keeping with the theme of
the lecture, we have mainly been concerned with introducing the basics of the relationship
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1 1

Figure 10: The (non-flat) map ϕ of Example 8. In both versions, we superimpose the tangent
cone to the line at a chosen point and the normal cone of the fiber over this point in green;
on the left, the chosen point is an arbitrary closed point away from the origin, and on the
right the point is the origin itself. In the version on the right, we also indicate one of the
“missing normal directions” not included in the normal cone in red.

between flatness and the normal cone construction, rather than giving a comprehensive
picture.

4 Some Applications of Flatness

We conclude by surveying a few of the uses of flatness in algebraic geometry. As in Section
2, our goal is only to gesture in the direction of more advanced topics for the interested
student, not to cover them with any particular depth or rigor.

4.1 Moduli Spaces and Deformations

In Lectures 12 and 13, we introduced projectivizations of conical fiber spaces — for example,
the projective space Pn

C. As discussed, this is “the space of lines through the origin in An+1
C ”

and indeed we showed that each of its closed points corresponds to some such line. However,
there is one issue which we did not explicitly tackle: Why is this “the space” of such lines?
For example, we could very easily construct a different scheme with points corresponding to
our lines simply by taking a disjoint union:⊔

ℓ a line through

the origin in An+1
C

SpecC.
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Of course, this is a bit silly, and from the quotient construction of projective space it in-
tuitively seems like the “more correct” way to define our space of lines, but the question
remains: How should we characterize this intuition mathematically, and can we do so in a
way that applies to other situations where we want to define “the space of ⟨algebro-geometric
objects of some fixed type⟩”?

Clearly, we want some limitation on how the different points in our space — that is,
different objects of the given type — fit together. As such, we should require not just that
points of our space — i.e., inclusions of a field spectrum into the space — correspond to
objects of the sort we are interested in, but that more general maps to the space correspond
to ”families of objects which vary nicely”; for example, in the case of our projective space,
we would like to say that map from the spectrum of a discrete valuation ring which sends
the closed point to some ℓ ∈ Pn

C corresponds somehow to a “germ of a 1-parameter family
of lines through the origin converging to the line corresponding to ℓ” and so forth.

It turns out that the best way to capture these concepts is, very roughly, as follows. Given
a scheme P , we can get a notion of “a collection of objects of the sort we are considering
indexed by P” by taking scheme maps ϕ : X→ P such that, for each point p ∈ P , the fiber
ϕ−1(p) is an object of the desired type. (Assuming our objects are schemes of some sort, at
least.) To exclude pathologies (such as, e.g., X being a disjoint union of the fibers of ϕ) and
ensure that such a map defines a “nicely-varying family”, we require as a baseline that it be
flat; the sense in which the fibers “fit together nicely” is then given by Proposition 6.

For a given type of algebro-geometric object, such a map X → P is then called a (flat)
family of ⟨objects of the given type⟩ over P , or, particularly in cases where P comes with some
distinguished point (like the closed point of a DVR spectrum), a deformation of the “central
fiber” over this distinguished point. The study of deformations of objects of some fixed type,
particularly over a fixed base or collection of bases, is called the deformation theory of objects
of that type. (I’m being substantially over-general and loose here, necessarily — depending
on the details of the “type of object” we are considering and context we are considering it
in, the exact meanings of terms will vary in practice.)

This gives us a rubric for making precise the notion of “the space of ⟨objects of a given
type⟩”. Specifically, this should be space M together with a natural bijection{

scheme maps
P→M

} ∼←→
{

flat families of
⟨objects of the type⟩ over P

}
as P runs over all schemes. (Again, this is just a sketch — depending on context, we may
restrict our attention to certain subcategories of the category of schemes, or even expand to
larger settings like the category of stacks2 mentioned in Lecture 12.) If such an M exists, it is
called the (fine) moduli space of ⟨objects of the given type⟩. Thus, for example, the “moduli
space of lines through the origin in An+1

C ” is Pn
C, and not the disjoint union we defined earlier,

precisely because the former can account for non-constant families of lines in this way and
the latter cannot. Indeed, for a given map P → Pn

C, we can obtain the corresponding family
of lines through the origin by pulling back the tautological bundle T(An+1

C )→ Pn
C (together

with some embedding data for its fibers, strictly speaking) over P . More generally, if M
is a moduli space in this sense, the identity map M → M is identified under the natural

2Or, to be really precise, I should say something like “one of the categories of stacks”; the details are
outside our scope here.
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bijection with a universal family U → M of objects of the type in question, and naturality
then guarantees that the family corresponding to P → M is given by pulling back U over
P .

Remark 3. Strictly speaking, our discussion of the way Pn
C functions as a moduli space has

been a bit imprecise; although it is true that the closed points of this space correspond to
lines through the origin in An+1

C , I’ve been talking as though this correspondence extended to
every point, which doesn’t really make sense. Likewise, the definition of a “family of objects
of a certain type” being a morphism where each fiber is such an object may be problematic
in practice, depending on how carefully we formulate our definition of the class of objects
under consideration. However, as mentioned, it is difficult to be truly precise at this level of
generality, and so I’ve focused mostly on giving you the flavor of things.

In the case of Pn
C (and other projective spaces), the mathematically rigorous version of

our discussion here is essentially captured by Theorem 3 of last week’s lecture.

There are many different subfields of moduli theory, of interest to different types of
algebraic geometers, and we will make no attempt at an exhaustive list. Some of the most
famous and classical moduli spaces include the Grassmannians, which are moduli spaces
of fixed-dimensional vector subspaces of a given vector space (the projective spaces Pn

k we
have seen thus far comprise the special case where the chosen subspace dimension is 1),
the moduli spaces of various sorts of projective curves (e.g., elliptic curves — although in
this case the moduli space does not actually exist in the world of schemes), and the Hilbert
schemes, which are moduli spaces of closed subschemes of given schemes.

4.2 Smooth Maps and Related Concepts

In Lecture 10, we discussed the notion of a smooth scheme over a given ground field. Com-
pared to most of the definitions we’ve seen in this course, the circumstances in which this
concept can be applied are a bit restrictive; typically, we’ve been more interested in working
with general, relative versions of concepts which can be applied to any morphism of schemes
than in focusing in on the setting of schemes over a field specifically. As you may have sus-
pected, such a generalization exists in this case as well; we’ve avoided it thus far only because
one of the ingredients involved is flatness. For simplicity, we retain a local Noetherianity
hypothesis on the target:

Definition 9. Let ϕ : X → Y be a map of schemes, and suppose that Y is locally Noetherian.
Then, for n ≥ 0 an integer, we say that ϕ is smooth of relative dimension n if it is locally of
finite type and flat, it has pure relative dimension n (i.e., every fiber is purely n-dimensional),
and the relative tangent scheme TX/Y is a vector bundle of rank n on X.

Note that, in the case where Y is the spectrum of a field, we retrieve our original definition
of smoothness — the flatness hypothesis does nothing in this case by Proposition 6 since all
of X is a single fiber and so the normal cone to this fiber is simply the fiber itself (this is a
geometric rephrasing of the algebraic fact that everything is flat over a field). In particular,
since the properties defining smoothness are all preserved under pullback, every fiber of a
smooth map of relative dimension n will then be a smooth scheme of dimension n over the
residue field at the chosen point of the target.
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Intuitively, smooth maps are the algebro-geometric analogues to submersions of smooth
manifolds — note that, in the differential-geometric setting, the appropriate analogue to
flatness is satisfied since the normal bundle to each fiber is trivial and of the same rank
as the tangent space at the corresponding point of the target, which perhaps gives some
indication as to why the flatness hypothesis is needed.

The following special case is of independent interest:

Definition 10. A map of schemes is called étale if it is smooth of relative dimension 0.

On the differential geometry side, these correspond to smooth maps which are isomor-
phisms locally on their domains — that is, those which are covering spaces in the sense of
algebraic topology. This identification turns out to be the key to defining algebro-geometric
analogues to several other classical concepts; using the typical correspondence between cover-
ing spaces and subgroups of the fundamental group, for example, we can consider the (finite)
étale maps to a given (locally Noetherian) scheme to reverse-engineer a sort of scheme-
theoretic fundamental group, called the étale fundamental group. With a bit more theory,
it is also possible to use étale maps to construct a notion of cohomology, called étale coho-
mology, which retrieves the ordinary singular cohomology groups of the classical topology
on finite-type C-schemes in nice cases, and therefore provides an analogue to these groups
for schemes defined over other fields. (The process of passing from a finite-type C-scheme
to the corresponding space endowed with the classical topology and a sheaf of “holomorphic
functions” is called analytification; essentially, the point is that, in each open chart where
our scheme is a subspace of An

C, we can consider the corresponding subspace of the classical
space Cn.)
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