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An Introduction to the Deformation Theory of Complete Intersection Singularities

Brief introductory note because I got lazy: analytic spaces

A finite-type C-scheme is a locally ringed space which is
locally isomorphic to the vanishing of some ideal of An

C, where
An
C has the Zariski topology and OAn

C
is the sheaf of

polynomials.

An analytic space is a locally ringed space which is locally
isomorphic to the vanishing of some ideal of Cn, where Cn has
the classical topology and OCn is the sheaf of holomorphic
functions.

We’ll use the latter setup in this talk because there were
things I didn’t get around to verifying in the algebraic setting;
if it makes you uncomfortable and you like to live dangerously
you can try ignoring it and just thinking about polynomials.
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An Introduction to the Deformation Theory of Complete Intersection Singularities

Deformations in general

Often we want to look at a map φ : X → S as giving us a
family of subspaces of X indexed by points of S .

To make sure that the fibers vary nicely as we look at
different points in the base, we require that φ be flat —
which is to say that all the corresponding maps of local rings
OS,φ(x) → OX ,x are flat.

We can now ask questions about how the fibers relate to each
other, what kind of deformations of a certain space are
possible, etc.



An Introduction to the Deformation Theory of Complete Intersection Singularities

Deformations in general

Often we want to look at a map φ : X → S as giving us a
family of subspaces of X indexed by points of S .

To make sure that the fibers vary nicely as we look at
different points in the base, we require that φ be flat —
which is to say that all the corresponding maps of local rings
OS,φ(x) → OX ,x are flat.

We can now ask questions about how the fibers relate to each
other, what kind of deformations of a certain space are
possible, etc.



An Introduction to the Deformation Theory of Complete Intersection Singularities

Deformations in general

Often we want to look at a map φ : X → S as giving us a
family of subspaces of X indexed by points of S .

To make sure that the fibers vary nicely as we look at
different points in the base, we require that φ be flat —
which is to say that all the corresponding maps of local rings
OS,φ(x) → OX ,x are flat.

We can now ask questions about how the fibers relate to each
other, what kind of deformations of a certain space are
possible, etc.



An Introduction to the Deformation Theory of Complete Intersection Singularities

Our situation

We’ll look at map germs

F : (Cn+k , 0)→ (Ck , 0);

these are given by a choice of k coordinate functions defined
and holomorphic in a neighborhood of the origin in Cn+k . For
convenience, we’ll write X for the source and S for the target.

Let X0 be the fiber over the origin; we’ll require that it have
dimension n, so that it’s (the germ of) a complete intersection
in Cn+k

(since OX ,0 is Cohen-Macaulay and OS ,0 is regular,
this means F is flat).

We’ll call F a deformation of the complete intersection
singularity (X0, 0).
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Aside: The Milnor fiber

The general fiber of F , which is smooth, is called its Milnor
fiber.

Some people care about how its topology relates to the
singularities of (X0, 0).

A simpler question: Is it obvious whether it’s even an
invariant of (X0, 0)? That is, could it depend on F?
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Is there a universal deformation?

If F : (X , 0)→ (S , 0) is a deformation of (X0, 0) and
g : (S ′, 0)→ (S , 0) (for S ′ = Ck ′

) is a nice enough map, we
get another deformation via pullback:

(X ′, 0) (X , 0)

(S ′, 0) (S , 0)

g̃

F ′ F

g

We can ask whether there is a deformation of (X0, 0) universal
in the sense that every other deformation can be written
uniquely as a pullback from it.

Answer: Only if (X0, 0) is smooth (i.e., extremely boring).
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Is there a versal deformation?

Being versal is like being universal without the uniqueness —
we ask only if there’s a deformation of (X0, 0) such that we
can get all others as pullbacks, maybe non-uniquely.

This still seems like a pretty miraculous thing to ask for, but it
turns out that such deformations do exist if (X0, 0) has only
an isolated singularity at the origin (i.e., X0 \ {0} is smooth
— this implies that all nearby fibers have at worst isolated
singularities as well).
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Preliminary stuff about vector fields

Let TX ,0 denote the OX ,0-module of germs of holomorphic
vector fields on X (and define TS ,0 similarly). Concretely,
TX ,0 = OX ,0

∂
∂x1
⊕ . . .⊕OX ,0

∂
∂xn+k

.

Then F ∗TS ,0 = OX ,0 ⊗OS,0
TS,0 = OX ,0

∂
∂t1
⊕ . . .⊕OX ,0

∂
∂tk

corresponds to a (holomorphic) choice at each point of X of a
tangent vector to S .

We can view the derivative of F as a map dF : TX ,0 → F ∗TS,0.
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Toward the Kodaira-Spencer map

Set T 1
X/S ,0 = coker(dF ) (= Ext1OX ,0

(ΩX/S,0,OX ,0)) and

T 1
X0,0

= T 1
X/S ,0/(F1, . . . ,Fk)T 1

X/S ,0

(= Ext1OX0,0
(ΩX0,0,OX0,0)).

Intuition: T 1
X/S ,0 gives us a choice for each point in X of a

way to move in S that will actually deform X at S in a
nontrivial way (this is why we mod out by dF ). T 1

X0,0
is just

the restriction to X0.

Since T 1
X0,0

is independent of F , we can think of it as “the
vector space of all possible ways to deform X0”.
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The Kodaira-Spencer map

The natural map

ρF ,0 : TS,0 → T 1
X/S ,0

is called the Kodaira-Spencer map. Its restriction

ρF (0) : T0S → T 1
X0,0

to the tangent space of S at the origin is the reduced
Kodaira-Spencer map.

Fact: A deformation of (X0, 0) is versal if and only if its
(reduced) Kodaira-Spencer map is surjective.
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Existence of versal deformations in the isolated case

Notice that T 1
X/S ,0 = coker(dF ), by definition, is supported

only on the critical locus of F (i.e., the locus where the
Jacobian drops rank and hence dF is not surjective).

Hence T 1
X0,0

is supported only on the singular locus of X0, so
it’s finite-dimensional if X0 has an isolated singularity at the
origin.

We can use this to extend F in a straightforward way and get
a versal deformation.
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Example: a cusp

Let F : (C2, 0)→ (C, 0) be given by F (x , y) = y2 − x3.

Then TX ,0 = C{{x , y}} ∂∂x ⊕ C{{x , y}} ∂∂y ,

F ∗TS ,0 = C{{x , y}} ∂∂t , and dF takes ∂
∂x to −3x2 ∂∂t and ∂

∂y

to 2y ∂
∂t .

Hence T 1
X/S ,0 = (C{{x , y}}/(x2, y)) ∂∂t = (C[x ]/(x2)) ∂∂t ,

T 1
X0,0

= T 1
X/S ,0/(y2 − x3)T 1

X/S,0 = T 1
X/S ,0,

and the reduced

Kodaira-Spencer map C ∂
∂t → (C[x ]/(x2)) ∂∂t is given by

∂
∂t 7→

∂
∂t .

Now we can build a versal deformation F̃ : (C3, 0)→ (C2, 0)
by F (x , y , u) = (y2 − x3 + ux , u).
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Questions?

Check out Looijenga’s Isolated Singular Points on Complete Intersections!
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