Embrace the Singularity: An Introduction to Stratified Morse Theory

Alex Hof

April 15, 2020

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Introduction

Outline:

- Refresher on Classical Morse Theory
- Structure of Singular Varieties
- Stratified Morse Theory

References:

- Milnor, Morse Theory
- Goresky and MacPherson, Stratified Morse Theory

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Quick Reminder: Analytification

A complex quasi-affine variety X ⊆ Cⁿ can be considered with the classical topology on Cⁿ.

- An abstract variety over C is locally quasi-affine, so we can "analytify" it as well.
- X is smooth over C if and only if its analytification is a manifold.

Embrace the Singularity: An Introduction to Stratified Morse Theory

Refresher: Classical Morse Theory

Setup and Definitions

- Let X be a compact smooth *n*-manifold and $f: X \to \mathbb{R}$ a smooth function.
- For $a \in \mathbb{R}$, let $X_{\leq a}$ denote the subset $f^{-1}((-\infty, a])$.

Definition

A point $x \in X$ is called a critical point of f if the differential $df_x : T_x X \to T_{f(x)} \mathbb{R} \cong \mathbb{R}$ is zero. For any such point, the value $f(x) \in \mathbb{R}$ is called a critical value of f.

 $\label{eq:constraint} {\sf Embrace\ the\ Singularity:\ An\ Introduction\ to\ Stratified\ Morse\ Theory}$

Refresher: Classical Morse Theory

Classical Morse Theorem, Part A

Theorem (Fundamental Theorem of Morse Theory, Part A)

If the interval [a, b] contains no critical values of f, then $X_{\leq a}$ and $X_{< b}$ are homeomorphic.

Refresher: Classical Morse Theory

Morse Functions and Morse Index

Definition

- The Hessian of f at a point $x \in X$ is the $n \times n$ matrix $\left[\frac{\partial^2 f}{\partial x_i \partial x_j}(x)\right]_{i,j}$, where x_1, \ldots, x_n are local coordinates at x.
- A critical point $x \in X$ of f is called **non-degenerate** if the Hessian of f at x is an invertible matrix.
- f is called a Morse function if all of its critical points are non-degenerate and all its critical values are distinct.
- The Morse index of f at a critical point x is the number of negative eigenvalues of its Hessian at x.

Embrace the Singularity: An Introduction to Stratified Morse Theory

Refresher: Classical Morse Theory

Classical Morse Theorem, Part B

Theorem (Fundamental Theorem of Morse Theory, Part B*)

If f is a Morse function, $x \in X$ is a critical point of f with critical value v = f(x), and λ is the Morse index of f at x, then the change in $X_{\leq a}$ as a passes v is given, up to homotopy, by attaching a λ -cell.

Refresher: Classical Morse Theory

Morse Data and the Full Statement

Definition

Let f be a Morse function, x a critical point, and v = f(x) as before. Let ε be so small that $[v - \varepsilon, v + \varepsilon]$ contains no other critical values of f. We say that a pair of spaces (A, B) with an attaching map $h : B \to X_{\leq v-\varepsilon}$ is Morse data for f at x if $X_{\leq v-\varepsilon} \cup_B A$ is homeomorphic to $X_{\leq v+\varepsilon}$.

- We can restate the previous theorem by saying that "(D^λ, ∂D^λ) is Morse data for f at x up to homotopy".
- In fact, a slightly stronger result holds: $(D^{\lambda} \times D^{n-\lambda}, \partial D^{\lambda} \times D^{n-\lambda})$ is Morse data for f at x.

Embrace the Singularity: An Introduction to Stratified Morse Theory — The Structure of Singular (Quasi-Projective) Varieties

Setup for Whitney Stratifications

- Not all varieties are smooth!
- Let's work with quasi-projective varieties for the sake of simplicity.
- More generally, we are interested in the situation where X is a locally closed subset of a smooth manifold M of dimension m.

Stratifications

Definition

Under these circumstances, a stratification of X is a collection of locally closed subsets S_{α} of X such that:

- Each S_{α} is a smooth submanifold of M.
- $X = \bigcup_{\alpha} S_{\alpha}$ and this union is disjoint and locally finite.
- If S_{α} and S_{β} are distinct strata such that S_{α} meets $\overline{S^{\beta}}$, then $S_{\alpha} \subseteq \overline{S^{\beta}}$. (This is called the frontier condition.)

Example

If Q is a quasi-projective variety, then Nonsing(Q), Nonsing(Sing(Q)), Nonsing(Sing(Sing(Q))), ... are the strata in a stratification of Q.

Whitney Regularity

Definition

Let $S_{\alpha} \subseteq \overline{S_{\beta}}$ be strata in a stratification and fix $x \in S_{\alpha}$. We say S_{β} is Whitney regular over S_{α} at x if the following condition holds: Whenever we have sequences $x_n \to x$ in S_{α} and $y_n \to x$ in S_{β} such that the lines $\overline{x_n y_n}$ converge to a line ℓ in $T_x M$ and the tangent spaces $T_{y_n}S_{\beta}$ converge to a subspace T of $T_x M$, ℓ is contained in T.

Non-Example

$$S_lpha=\{(0,0)\}$$
 and $S_eta=\{(x,x\sin\left(rac{1}{x}
ight))\mid x>0\}$ in $\mathbb{R}^2.$

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

Embrace the Singularity: An Introduction to Stratified Morse Theory — The Structure of Singular (Quasi-Projective) Varieties

Whitney Stratifications

Definition

A Whitney stratification is a stratification $\{S_{\alpha}\}_{\alpha}$ such that, for every pair of strata $S_{\alpha} \subseteq \overline{S_{\beta}}$, S_{β} is Whitney regular over S_{α} at every point.

Remark

Such a stratification will also satisfy Whitney's Condition A: If $x \in S_{\alpha}$ and $y_n \to x$ is a sequence in S_{β} such that $T_{y_n}S_{\beta} \to T \subseteq T_xM$, then $T_xS_{\alpha} \subseteq T$.

Whitney Stratifications

Definition

A Whitney stratification is a stratification $\{S_{\alpha}\}_{\alpha}$ such that, for every pair of strata $S_{\alpha} \subseteq \overline{S_{\beta}}$, S_{β} is Whitney regular over S_{α} at every point.

Non-Example

The singularity stratification of the Whitney umbrella $x^2 - zy^2 = 0$ in \mathbb{C}^3 is not a Whitney stratification.

However, it is true that every quasi-projective complex variety admits a Whitney stratification.

Normal Slices and Links

- Whitney stratified spaces have some nice local structure.
- Suppose we have a Whitney stratification of our locally closed subset X in M.

Definition

Let $x \in X$ and denote by S the stratum containing it. Let V be a smooth submanifold of M such that $V \cap S = \{x\}$ and V is transverse¹ to S at x. The normal slice to S at x is $N := X \cap V \cap B$ for B a closed ball of sufficiently small radius.

The link of S at x is $L := X \cap V \cap \partial B$. Neither the normal slice nor the link depend on any of the choices made, including the choice of $x \in S$.

¹I.e., $T_x S$ and $T_x V$ span $T_x M$.

Setup for Stratified Morse Theory

- Let X be a compact, Whitney-stratified subset of a smooth *m*-manifold M and $f: M \to \mathbb{R}$ a smooth function.
- For a ∈ ℝ, define X_{≤a} to be X ∩ f⁻¹((-∞, a]) and, for any stratum S, define S_{≤a} similarly.
- We now take a critical point of f|X to be any point x ∈ X such that f|S has a critical point at x for S the stratum which contains x. In this case f is non-degenerate if it is a non-degenerate critical point of f|S.

Stratified Morse Theorem, Part A

Theorem (Fundamental Theorem of Stratified Morse Theory, Part A)

If the interval [a, b] contains no critical values of $f|_X$, then $X_{\leq a}$ and $X_{\leq b}$ are homeomorphic in a way that "preserves the stratification".

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Conormal Vectors and Degeneracy

- Each statum S, being a submanifold, has a normal bundle given by taking the quotient of bundles T_SM/T_SS . Its dual is the **conormal bundle** to S this can be identified with the subbundle of $T_S^{\vee}M$ consisting of cotangent vectors which vanish on T_SS .
- A conormal vector to S at x is called **degenerate** if, for some stratum S' whose closure contains S and sequence $y_n \to x$ in S', $T_{y_n}S'$ converges to $T \subseteq T_xM$, it vanishes on T.

Embrace the Singularity: An Introduction to Stratified Morse Theory - Stratified Morse Theory

Morse Functions and Morse Data, Again

Definition

 $f|_X$ is called a Morse function if the following hold:

- Its critical values are distinct.
- Its critical points are non-degenerate.
- For every critical point $x \in S$, $df_x : T_x M \to \mathbb{R}$ is a non-degenerate conormal vector to S.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへの

Morse Functions and Morse Data, Again

Definition

Let f be a Morse function on X, x a critical point, and v = f(x). Let ε be so small that $[v - \varepsilon, v + \varepsilon]$ contains no other critical values of f. We say that a pair of "stratified" spaces (A, B) with a "stratification"-preserving attaching map $h : B \to X_{\leq v-\varepsilon}$ is Morse data for f at x if $X_{\leq v-\varepsilon} \cup_B A$ is homeomorphic to $X_{\leq v+\varepsilon}$ in a way that preserves the "stratification".

Normal and Tangential Morse Data

Definition

Let $x \in X$ be a critical point of f in the stratum S, and let N be the normal slice to S at X. Then a pair (A, B) is called **tangential** Morse data for f at x if it is Morse data for $f|_S$ at x. On the other hand, such a pair is called normal Morse data for f at x if it is Morse data for $f|_N$ at x.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Stratified Morse Theorem, Part B

Theorem (Fundamental Theorem of Stratified Morse Theory, Part B)

If x is a critical point of x, (A, B) is tangential Morse data for f at X, and (A', B') is normal Morse data for f at x, then $(A, B) \times (A', B') := (A \times A', B \times A' \cup A \times B')$ is Morse data for f at x.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Embrace the Singularity: An Introduction to Stratified Morse Theory L Stratified Morse Theory

Some Applications