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Final Paper: Tropicalization via Blueprints

The aim of this note is to give a brief overview of the rudiments of Oliver Lorscheid’s theory
of blueprints and blue schemes, the exposition largely being based upon his lecture notes [1] and
preprint [2].

Let me begin by laying out the background as I understand it. Broadly speaking, the central idea
of tropical geometry is to take algebro-geometric objects defined over some field k and study simpler,
skeletonized simulacra of them, which are constructed using some fixed valuation (or, equivalently,
non-Archimedean absolute value) on k. In practice, this can take a number of different forms: there
are the notions of the tropicalization of an affine variety as, alternately, the image of the closed points
under the valuation or the joint tropical vanishing locus of the polynomials in the corresponding
ideal; the Kajiwara-Payne tropicalization extending this notion to subvarieties of toric varieties; the
Giansiracusa tropicalization endowing this last notion with something of a scheme structure; the
Berkovich analytification we have seen in class; and various and sundry others with which I am less
familiar. The aim of Lorscheid’s theory is to give a common framework within which all of these
disparate notions can be understood.

One candidate which initially seems appealing is the category of ordered semirings with
subadditive homomorphisms — that is, the category where the objects are semirings with fixed
partial orders respecting the operations and their units and the morphisms are order-preserving
multiplicative maps f such that f(a + b) ≤ f(a) + f(b). In this context, a valuation on a field k is
simply a morphism v : k → T, where T is the tropical semiring (with the max-plus convention and
the obvious ordering) and k is given the trivial partial order. It is then natural to wonder whether
tropicalization can be understood as a pullback along the corresponding map SpecT→ Spec k (for
some appropriate notion of “Spec”). However, there are apparently difficulties which prevent the
construction of this kind of a “tensor product of ordered semirings with subadditive homomorphisms”.

To surmount this issue, Lorscheid considers a slightly more flexible setting, the category of
ordered blueprints, where the tensor product makes sense and has the properties we want. The
most straightforward definition is as follows. For the objects, we have pairs (B•, B+) where B+ is an
ordered semiring and B• is a multiplicatively closed subset of B+ which contains 0 and 1. For the
morphisms (B•, B+)→ (C•, C+), we have morphisms B+ → C+ of ordered semirings — N.B., these
are now true semiring morphisms which preserve the order, not merely the subadditive morphisms
discussed above — which map B• into C•.

For any ordered blueprint (B•, B+), we can think of the set B•, loosely, as “the collection
of elements of B+ we actually care about”. Note that B• has the structure of a commutative
monoid-with-zero — that is, a commutative monoid with an element 0 such that 0 ·m = m · 0 = 0
for all m. To emphasize the primacy of this subset, Lorscheid introduces a second category, that
of axiomatic ordered blueprints, which is equivalent to the first and, although less intuitive to
define, ends up being easier to work with in many cases.

An axiomatic ordered blueprint is a monoid-with-zero A together with a preorder on the set of
finite formal sums of elements of A which respects the multiplication in A and the formal addition,
restricts to a partial order on A, and makes 0 ∈ A both precede and follow the empty sum (so that,
if we mod out by the induced equivalence relation to make the preorder into a partial order, the
two are identified). A morphism of axiomatic ordered blueprints is a morphism of the underlying
monoids-with-zero (i.e., a map of sets preserving multiplication, the zero element, and the unit) so
that the induced map on sets of finite formal sums preserves the preorder.
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To see the equivalence with our first definition of an ordered blueprint, start with (A,≤) and
mod the set of finite formal sums out by the equivalence relation induced by the preorder. This
yields an ordered semiring B+ generated as a semiring by the underlying monoid-with-zero A, which
we take to be our B•. It is straightforward to check that this construction is functorial and that
an inverse functor can be defined. Note also that, whichever formulation of the category we use,
there are natural ways to embed in it the categories of semirings, ordered semirings more generally,
monoids-with-zero, and ordered monoids-with-zero more generally. Finally, although we will not go
into detail here, there is a notion of “the spectrum of an ordered blueprint”, and as in the scheme
case we can glue together along localizations to get the category of ordered blue schemes.

Having established our setting, we must now retrieve the notion of a valuation, since we have
insisted on additivity and not merely subadditivity in our morphisms. To do so, we introduce for
an axiomatic ordered blueprint B = (A,≤) its monomialization Bmon := (A,≤′), where ≤′ is the
equivalence relation defined by “throwing away all the relations

∑
i ai ≤

∑
i bi except those of the

form a ≤
∑

i bi for a, bi ∈ A” in some suitably precise sense. Note that the notion of monomialization
can be extended to ordered blue schemes by gluing together local monomializations.

Then, for k a field, a map v : k → T of monoids-with-zero is a valuation exactly when the
composition kmon → k

v−→ T is a morphism of ordered semirings, where k is identified with the
ordered blueprint (k, k) with trivial order and T with the ordered blueprint (T,T) with the usual
order on T. For any ordered blue k-scheme X, we can now define the tropicalization of X as
the ordered blue T-scheme Tropv(X) := Xmon ×Spec kmon SpecT, where ×Spec kmon denotes the ‘fiber
product’ which arises by locally taking tensor products of ordered blueprints.

It remains to demonstrate that this notion is in some sense useful by tying it back to the notions
of tropicalization which actually appear in practice. To begin, let X be an affine k-scheme. Then it is
not difficult to show that the set Tropv(X)(T) of T-valued points — i.e., maps Tropv(X)→ SpecT

— of the tropicalization is naturally identified with the set of points of the Berkovich analytification
Xan along the non-Archimedean absolute value corresponding to v. Moreover, Lorscheid has a
general definition of a so-called fine topology on the T-valued points of an ordered blue scheme
which in this case retrieves the topology of the Berkovich analytification. The same remarks almost
apply as well for arbitrary k-schemes, but due to some unpleasantness with the gluing one must
commit to a particular blue model for X, and different choices may yield different tropicalizations.
However, the space of T-valued points for any of these tropicalizations remains homeomorphic to
Xan.

There is, likewise, a realization of the Kajiwara-Payne tropicalization as the space of T-valued
points of a tropicalization in Lorscheid’s sense, and this gives rise to a natural map from the Berkovich
analytification to the Kajiwara-Payne tropicalization — however, I have yet to familiarize myself
with the details. Indeed, there are a variety of other notions of tropicalization that can be placed
on this footing, but I will make no attempt to explicate them here — see [2] for the gory details.
I will, however, note that Lorscheid’s definitions, stated in full generality, actually allow for bases
other than SpecT and therefore encompass, for example, the Foster-Ranganathan analytification
and tropicalization arising from a higher-rank valuation.
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