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I. Introduction

Milnor(-Lê) fibration

Let f : Cn+1 → C be a polynomial vanishing at the origin. Then,
for Sε a small enough sphere around the origin and Kε = V (f )∩ Sε
the link,

f
|f | : Sε \ Kε → S1

is a smooth locally trivial fibration, called the Milnor fibration of f
at the origin. The Milnor fiber Ff is a parallelizable 2n-manifold,
and in the case of an isolated singularity it is bounded by the link.

Equivalently, if δ > 0 is sufficiently small relative to ε, we can
consider the restriction

f : ∩f −1(D∗δ )→ D∗δ

for the ball around the origin and D∗δ the punctured disk in C.
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Example: A Brieskorn-Pham singularity

Consider f (x , y , z) = x2 + y3 + z5:
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I. Introduction

Some generalizations of this setup

There are also more general versions of the Milnor fibration:

We can consider non-polynomial complex-analytic functions
f : Cn+1 → C.

We can consider complete intersection singularities instead of
hypersurface singularities using functions f : Cn+k → Ck .

We can consider functions f : X → C on possibly singular
spaces X .

There is a sheaf-theoretic perspective which lets us generalize
questions about the cohomology of the fiber and can be used
to obtain some results even in the classical case.
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Some applications and connections with other areas

Milnor fibers and their cohomology show up in various nearby areas
of math, including:

The proof of the Weil conjectures

Symplectic geometry

Enumerative geometry

Birational geometry

The theory of characteristic classes for singular varieties

Hodge theory

On the applied side, they’re involved in nearest-point problems by
way of the Euclidean distance degree, which has been used to
study computer vision and chemical reaction networks, among
other things.
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Some open questions

In all but the simplest cases, the computation of the cohomology
of the Milnor fiber Ff is still extremely open. For example:

If V (f ) is a central hyperplane arrangement, it is not known
whether the Betti numbers of Ff are combinatorially
determined.

(Bobadilla’s conjecture) If f has a 1-dimensional critical locus
Σf with a single irreducible component, it is not known
whether the cohomology of the Milnor fiber at a point where
Σf is itself singular can be the same as the cohomology of the
Milnor fiber at a generic point of Σf .
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II. Results for nice polynomials

The critical locus and homology

If s is the dimension at the origin of f ’s critical locus, then Ff
is (n − s − 1)-connected, and in particular the reduced
homology is zero outside of the interval [n − s, n].

In the case of an isolated singularity (s = 0), we also have
that H̃n(Ff ) ∼= Zµf , where

µf = dimC
OCn+1,0

( ∂f∂x0 , . . . ,
∂f
∂xn

)

is the Milnor number of f at the origin.

In fact, Ff is homotopy equivalent to a bouquet of µf
n-spheres in this case.
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II. Results for nice polynomials

Examples

If f (x , y , z) = x2 + y3 + z5, Ff is a bouquet of 8 2-spheres.
Consider f (x , y , z) = x2y2 + z2, and note that the critical
locus V (xy2, x2y , z) has dimension s = 1 at the origin. It
turns out that in this case Ff ' S1 ∨ S2 ∨ S2.
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II. Results for nice polynomials

The (weighted) homogeneous case

Suppose f : Cn+1 → C is (weighted) homogeneous of degree d , so
that V (f ) is the affine cone over the hypersurface cut out by f in
(weighted) projective n-space.

Then the C∗-action on Cn+1 \ V (f ) gives a local trivialization
for f over C \ {0}; in this case f ’s restriction is called the
global Milnor fibration.

This is fiber diffeomorphic to the usual Milnor fibration. In
particular, Ff is diffeomorphic to f −1(1).

By considering the quotient of f −1(1) under the action of the
dth roots of unity, we can see that the Milnor fiber is a d-fold
cover of the complement of the hypersurface cut out by f in
(weighted) projective n-space.
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Combining polynomials

Theorem (Generalized Thom-Sebastiani; Nemethi 1991)

Let p : C2 → C, g : Cm → C, and h : Cn → C be polynomials,
and define f : Cm+n → C by f = p(g , h). Then Ff is given up to
homotopy by starting with the total space of a fiber bundle with
base Fp and fiber Fg × Fh, then attaching some appropriate
numbers of copies of cFg × Fh and Fg × cFh.

Corollary (Classical Thom-Sebastiani; Sakamoto 1974)

Fg+h ' Fg ∗ Fh, since in this case p(c , d) = c + d has trivial
Milnor fiber and the numbers mentioned above are both 1.
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Example: Whitney umbrella

f (x , y , z) = y2 − zx2 has critical locus V (x2, xz , y) (the z-axis plus
some fuzz at the origin), and we can see by Thom-Sebastiani that
Ff ' Fy2 ∗Fzx2 ' {2 pts}∗{zx2 = 1} ' S{z = 1/x2} ' SS1 ' S2.
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Example: The Whitney umbrella as a family

With a slight change of coordinates (t = z − x), the defining
function of the Whitney umbrella can be written as
f (t, x , y) = y2 − x3 − tx2;

slicing by the hyperplanes t = k gives
us polynomials ft(x , y) such that V (ft) is a family of nodal plane
curves degenerating to a cusp at t = 0.



The Topology of Milnor Fibers

III. Slices and equisingularity results

Example: The Whitney umbrella as a family

With a slight change of coordinates (t = z − x), the defining
function of the Whitney umbrella can be written as
f (t, x , y) = y2 − x3 − tx2; slicing by the hyperplanes t = k gives
us polynomials ft(x , y) such that V (ft) is a family of nodal plane
curves degenerating to a cusp at t = 0.



The Topology of Milnor Fibers

III. Slices and equisingularity results

Questions

Given a hyperplane H through the origin, how is the Milnor
fiber of f at the origin related to that of f |H?

If ft is a one-parameter family of polynomials, how does the
Milnor fibration of ft at the origin change as we vary t?

Lê and Ramanujan (mostly) answered this for a family of
isolated singularities with constant Milnor number.

How do the Milnor fibers of f at different points in the critical
locus relate to each other?
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Lê’s attaching result

Definition

Let x0 be a sufficiently generic linear form on Cn+1. Then the
relative polar curve of f at the direction defined by x0 is defined
as the closure of the locus where the Jacobian matrix of
(f , x0) : Cn+1 → C2 has rank exactly 1 and denoted by Γ1

f ,x0
.

Theorem (Lê 1973)

In the above setting, if we let H = V (x0), then Ff is given up to
homotopy by attaching (V (f ) · (Γ1

f ,x0
)red)0 n-cells to Ff |H .
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Recurring example: Whitney umbrella

Let f (t, x , y) = y2 − x3 − tx2 as before. Then
Γ1
f ,t = {−x2 6= 0,−3x2 − 2tx = 0, 2y = 0} = V (3x + 2t, y),

so

(V (f ) · (Γ1
f ,x0

)red)0 = 3, which we should expect since µy2−x3 = 2

and Ff ' S2.
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Polar varieties

Definition

Let ~x = (x0, . . . , xn) be a sufficiently generic coordinate system for
Cn+1. Then the kth (relative) polar variety Γk

f ,~x of f with

respect to ~x is defined to be the closed subscheme of Cn+1

obtained by starting with V ( ∂f∂xk , . . . ,
∂f
∂xn

) and removing all

components contained in the critical locus V ( ∂f∂x0 , . . . ,
∂f
∂xn

).
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Example: Whitney umbrella

Let ~x = (t, x , y) and f (t, x , y) = y2 − x3 − tx2. Then Γ0
f ,~x = ∅, we

have already seen Γ1
f ,~x = V (3x + 2t, y), and Γ2

f ,~x = V (y).
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Lê cycles and numbers

Definition

If ~x is sufficiently generic as before, the kth Lê cycle of f with
respect to ~x is denoted by [Λk

f ,~x ] and defined to be equal to the

cycle [Γk+1
f ,~x ∩ V ( ∂f∂xk )]− [Γk

f ,~x ].

As long as the intersection of [Λk
f ,~x ] with [V (x0, . . . , xk−1)] is

zero-dimensional at the origin, we call the intersection number
([Λk

f ,~x ] · [V (x0, . . . , xk−1)])0 the kth Lê number of f with respect

to ~x at the origin and denote it by λkf ,~x(0).
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Example: Whitney umbrella

~x = (t, x , y), f (t, x , y) = y2 − x3 − tx2. Then
[Λ0

f ,~x ] = [V (3x + 2t, y) ∩ V (x2)]− [∅] = [V (x2, 3x + 2t, y)] = 2[0]

and [Λ1
f ,~x ] = [V (y) ∩ V (3x2 + 2tx)]− [V (3x + 2t, y)] = [V (x , y)].

We have λ0f ,~x(0) = 2 and λ1f ,~x(0) = ([V (x , y)] · [V (t)])0 = 1.
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Some facts

The underlying sets of the Lê cycles are contained in the
critical locus, as claimed, and in fact the union of the
underlying sets for the 0, . . . , kth Lê cycles is the part of the
underlying set of Γk+1

f ,~x that lies in the critical locus.

If the coordinates are generic enough, [Λk
f ,~x ] has pure

dimension k at the origin; in particular, λkf ,~x(0) = 0 if
k 6∈ [0, s].

If s = 0, λ0f ,~x(0) = µf .

Theorem (Massey 1990)

In the setting of the previous definition, Ff has a cell
decomposition with λkf ,~x(0) (n − k)-cells for 0 ≤ k ≤ s (plus one
extra 0-cell to start things off).
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Constancy of the fibration

Theorem (Massey 1995)

If ft is a family of polynomials such that the Lê numbers of ft at
the origin are constant in t, and our choice of coordinates is
sufficiently generic with respect to the family, then the homology
of the fibers Fft is independent of t.

Proof idea

For large enough j , ft + x0
j has Lê numbers calculable from those

of ft (Massey’s “Lê-Yomdin formulas”), hence independent of t,
and a critical locus of dimension s − 1. By induction, it is then
enough to argue that the constancy of the homology of ft + x0

j

implies that of the homology of ft + w j for some new variable w ,
and that this in turn implies that of the homology of ft .
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Does quantifying the scheme structure of the critical locus
tell us anything?

Let (X ,OX ) be a (locally Noetherian) scheme. Then, for each
point x ∈ X (not necessarily closed), the length of the ideal
saturation (0) : mx

∞ in OX ,x , which we’ll call ax(X ), should
measure “the extent to which x is an associated point of X”. For
example:

ax(X ) > 0 if and only if x is associated.

If X is an integral scheme with generic point η, aη(X ) = 1
and ax(X ) = 0 for all other points x ∈ X .

If X is irreducible with generic point η,
multx(X ) = aη(X ) multx(Xred).

If X = V (xy , yk+1) in Cn, then a(0)(X ) = 1, a(x ,y)(X ) = k ,
and ax(X ) = 0 for all other points x ∈ X .
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Does quantifying the scheme structure of the critical locus
tell us anything?

Question

Let X = SpecOCn+1,0/( ∂f∂x0 , . . . ,
∂f
∂x0

) be the scheme-theoretic
critical locus of f at the origin. Given the associated points p of
X , the values ap(X ), and the dimensions and multiplicities of the

components Cp = {p} at the origin, how much can we say about
the Betti numbers of Ff at the origin? What can we say about
other equisingularity questions?

(It’s possible we want X to be the spectrum of the completion or
henselization of this ring instead.)
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Does quantifying the scheme structure of the critical locus
tell us anything?

One idea for a way to attack this:
The germ of f at the origin corresponds to the map

OCn+1,0 = C[x0, . . . , xn](x0,...,xn)
φ←− C[t](t) = OC,0

given by φ(t) = f . We can pass to a map (Oh
C,0)t → (Oh

Cn+1,0)f ,
and a comparison theorem from SGA tells us that the étale
cohomology of

Spec
(

(Oh
Cn+1,0)f ⊗(Oh

C,0)t
(Oh

C,0)t
)

gives the singular cohomology of the Milnor fiber (when the
coefficients are finite).
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Thanks for watching!
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