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Milnor Fiber Consistency via Flatness

Alexander Hof

Abstract

The Milnor fibration, which was introduced by Milnor in [Mil68], captures the local be-
havior of a holomorphic function near a critical point and has been the subject of much
research in the subsequent decades. Despite this, the answers to many basic questions
about its topology remain poorly understood. The results of the author in [Hof] suggest
that the solution to this problem should lie in analysis of the embedding in the ambient
space of the function’s critical locus, which we endow with the structure of a complex-
analytic space by regarding it as the vanishing of the function’s Jacobian ideal. Here
we will explicate these results after building up the necessary background machinery on
complex-analytic geometry, stratification theory, and the Milnor fibration itself.
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Chapter 1

Introduction

Consider a holomorphic function f : U → C defined on a neighborhood of the origin in C,

and suppose first that the partial derivatives of f do not all vanish at the origin. Then,

by standard facts from differential geometry, f can locally be written as a coordinate

projection, so that the restriction of f to an open ball around the origin is a trivial

fibration, with fiber a smaller-dimensional ball, over values near f(0); that is, we have the

local picture depicted in Figure 1.1.

1

Figure 1.1: A local coordinate projection — e.g., f(x, y) = y.

If the partial derivatives of f at the origin do all vanish — that is, if the origin is a

critical point of f — the situation becomes more complicated. The fiber of f through

such a point is singular, at least as a complex-analytic space (for which see Section
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2.1), while the fibers over all nearby values of f will locally turn out to be smooth.

Hence, in this case, the restriction of f near the origin cannot define a fiber bundle over

any neighborhood of f(0) as it does in the previous situation. However, it will turn

out that throwing away the fiber through the origin solves this problem — we obtain a

smooth locally trivial fibration over a punctured neighborhood of f(0), called the Milnor

fibration, one example of which is depicted in Figure 1.2.

1

Figure 1.2: Local fibers around a critical point — e.g., the origin for f(x, y) = xy.

The fibers of this fibration are simply the parts near the critical point of nearby smooth

fibers of f , and it is natural to wonder whether the topology of its fibers and the mon-

odromy of the fibration as whole can be computed from f — that is, how much we

know about the way a given holomorphic function behaves locally at a point

of its domain. As we will see in Section 4.1, this is reasonably well-understood in the

case of an isolated critical point. However, outside these circumstances there is much that

remains to be discovered — many basic facts about the topology of the Milnor fibration

are still unknown in general.

The remainder of this thesis will focus on the idea, proposed by the author in [Hof],

that such facts should be recoverable from the Jacobian ideal generated by the par-

tial derivatives of f in the local ring of holomorphic function germs at the critical point

— that is, information about the Milnor fibration should be captured by the

structure of the critical locus as a subscheme or complex-analytic subspace of
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the ambient space.

We will begin in Chapter 2 by introducing the machinery of schemes and complex-

analytic spaces and surveying some basic facts from algebraic and complex-analytic ge-

ometry. In particular, we will focus on developing and motivating the notion of a normal

cone, which plays a key role in the results of [Hof], and explaining how this construction

can be used to provide geometric interpretations of key concepts from algebraic geometry,

In Chapter 3, we will examine the singularities of complex-analytic spaces and explore

the machinery of stratifications, which allows us to study singular spaces by breaking

them into smooth pieces. This will culminate in the first of the main results of [Hof], a

stratification theorem for families of holomorphic functions based on the flatness over the

parameter spaces of the normal cones to their critical loci.

Finally, in Chapter 4, we will introduce the Milnor fibration itself, proving its existence

and surveying some of the main techniques for controlling its behavior in families. This

will conclude with a summary of the results of [Hof], which again allow us to do so in

terms of the flatness of normal cones to critical loci.
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Chapter 2

Normal Cones in Algebraic and

C-Analytic Geometry

Here we lay the foundations for the results of later chapters by introducing many of the

fundamental objects we will work with and establishing basic facts about them. Our

main subjects will be algebraic geometry, complex-analytic geometry, and the relationship

between the two — the overarching goal in discussing these will be to furnish the reader

with geometric intuitions for all constructions and results, even those which are usually

presented in more algebraic terms.

To this end, we will work toward the definition of a particular object, the normal cone

of a closed subspace, which is particularly useful in this regard. Section 2.1 will remind

the reader of some salient details from the algebraic and complex-analytic settings, and

Section 2.2 will build on this by explicating the notion of a cone in algebraic or complex-

analytic geometry, providing a geometric interpretation of coherent sheaves along the way.

Section 2.3 will introduce the definition of the normal cone itself and establish some basic

geometric intuitions about it, while Section 2.4 will conclude by exploring some of the

applications of this construction in geometrically interpreting common objects and facts

from algebraic geometry.
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2.1 Schemes and C-Analytic Spaces

We begin by recalling some standard notions from algebraic and complex-analytic geome-

try. Since these are generally well-known, we will not aim to give a detailed introduction,

only to provide a broad overview of the intuitions involved and point the reader in the

direction of more detailed explications.

2.1.1 Basic Constructions

Perhaps the most fundamental objects in algebraic geometry are the schemes, spaces

which can be formalized in a number of ways but which are essentially based on the

following idea. If R is a ring, then there are compelling analogies of quotient maps R ↠

R/I and localization maps R→ Rf to inclusions in the other direction of closed and open

subsets respectively into a topological space; hence we can think of rings as geometric

objects of some kind simply by formally reversing the direction we think of maps between

them as having. These objects are the affine schemes, and from them we recover schemes

more generally simply by allowing ourselves to glue things together along open covers, as

we can in the case of topological spaces. The affine scheme SpecR associated to a ring R

is called its spectrum, and most typically thought of as the topological space of prime

ideals ofR (with the topology induced by localizations as above) together with a structure

sheaf OSpecR capturing the extra information not contained in the space itself — for the

details of these constructions and a more comprehensive account of the subject, see, e.g.,

[Har77; Vak23].

In the case of a polynomial ring R = K[x1, . . . , xn] over an algebraically closed field

K, Hilbert’s Nullstellensatz, for which see, e.g., Theorem I.1.3A of [Har77], allows us to

identify the closed points of SpecR with elements of Kn, and hence likewise for those

of locally closed subschemes of SpecR. In the case where K = C is the field of complex

numbers, the existence of the classical topology on Cn then lets us visualize these schemes,

and finite-type C-schemes more generally, in terms of polynomially-defined subsets of the

familiar Euclidean space, although care must be taken due to the differences between the
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topologies involved and the existence of non-closed points.

To bridge the gap between these two perspectives, we recall the notion of a complex-

analytic space. We can consider on the topological space Cn the sheaf of holomorphic

functions in n variables; just as schemes can be thought of as locally ringed spaces which

are locally isomorphic to affine schemes, then, we can consider locally ringed spaces which

are locally isomorphic to subspaces cut out from open subsets of Cn by the vanishing

of collections of holomorphic functions together with the corresponding quotients of this

sheaf. Such a space will be called a complex-analytic space. In particular, we can

then construct for any finite-type C-scheme X the corresponding complex-analytic space

Xan, called its analytification, as well as a natural map Xan → X of locally ringed

spaces — for further exposition of these notions, see [Ser56; Nar66; GR65; Fis76; Har77].

Note that some authors, such as Fischer ([Fis76]), require a complex-analytic space to

be Hausdorff, which means that the analytification exists only for finite-type C-schemes

which are moreover separated, but we will not take this requirement to be part of the

definition.

We note that complex-analytic spaces share an important property with locally Noethe-

rian schemes, by the following Oka coherence theorem:

Theorem 2.1.1 (e.g., Theorem IV.3 of [Nar66]). Let X be a complex-analytic space. Then

OX is coherent as a sheaf of OX-modules.

2.1.2 Local Study of Schemes and C-Analytic Spaces

In studying both schemes and complex-analytic spaces, particularly from the perspective

of singularities, it will often be of interest to work locally around a single point, typically

a closed one — that is, to consider only the germ of the space around that point, which

is the object given by working with the equivalence classes of functions, spaces, and other

objects defined over the space up to the equivalence relation given by agreement on any

open neighborhood of the point. This can be regarded as a kind of “formal intersection of

all open neighborhoods of x”. In the algebraic case, fortunately enough, this object itself
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exists as a scheme, the spectrum of the local ring at the point in question, and so we can

readily study germs of schemes without needing to develop new machinery specialized to

the task.

The definition of a complex-analytic space, on the other hand, is not flexible enough for

the corresponding analytic statement to be true. Instead, however, we have the following

result:

Proposition 2.1.2 (e.g., Section 0.21 of [Fis76]). The contravariant functor from the

category of germs of complex-analytic spaces to the category of quotients of convergent

power series rings over C given by taking local rings is an anti-equivalence of categories.

Thus germs of complex-analytic spaces can in some respects be regarded simply as

affine schemes of a particular kind. However, this identification breaks down somewhat

as soon as any kind of non-locality is introduced — perhaps most notably, for example,

the tensor product of two convergent power series rings over a third need not itself be a

convergent power series ring, and so no notion of a fiber product of germs of complex-

analytic spaces can be recovered straightforwardly from the usual fiber product of schemes.

Hence some care needs to be taken in interpreting complex-analytic space germs in this

way; nevertheless, this perspective remains useful in dealing with such objects without

needing to reprove analogues of existing results from scheme theory.

If X is a finite-type C-scheme, more can be said about the relationship between the

germ ofX at a closed point and that of its analytification, given some additional machinery.

We begin by noting that, for schemes in general, we have a number of ways to “zoom in

further” on a point beyond simply taking the germ:

Definition 2.1.3 (e.g., [Har77; Eis04]). Let X be a scheme, x ∈ X a point, R = OX,x the

local ring of X at x, and m its maximal ideal.

� For each k ≥ 0, we define the kth-order infinitesimal neighborhood of x

in X to be the affine scheme SpecR/mk+1.



8

� We define the completion R̂ of R to be the inverse limit of the diagram

· · · → R/m3 → R/m2 → R/m → 0 of rings.

Then we have natural maps as follows:

x = SpecR/m ↪→ SpecR/m2 ↪→ R/m3 ↪→ · · · ↪→ Spec R̂→ SpecR ↪→ X

We can view this as giving a kind of hierarchy of “neighborhoods of x in X” — thinking

of the elements of R as the germs of algebraic functions on X at x, we can regard the

kth-order infinitesimal neighborhood as “a neighborhood of x so small that restricting a

function to it retains only the k-jet, the information of the partial derivatives of order ≤ k

at x”. Spec R̂, being in some sense the “union” of all these infinitesimal neighborhoods,

then carries exactly the information of all possible choices of derivatives of all orders at

x, and so we can think of it as “a neighborhood so small that every formal power series

expansion converges”. There is also another local ring, the henselization of R, whose

spectrum sits between Spec R̂ and SpecR, but we will not discuss it here.

IfX is a finite-type C-scheme and x a closed point, we haveR = C[x1, . . . , xn](x1,...,xn)/I

for some ideal I — R̂ is then the quotient of the formal power series ring C[[x1, . . . , xn]] by

the corresponding ideal. The local ring OXan,xan of Xan at the point xan sent to x by the

map Xan → X, similarly, is given by the corresponding quotient of C{x1, . . . , xn}, the ring

of power series which converge on some neighborhood of the origin in Cn with the analytic

topology. We can then see that the affine scheme corresponding to the germ of Xan at x

sits between Spec R̂ and SpecR in the above hierarchy — that is, on the level of germs

at a closed point the analytification of a finite-type C-scheme can be thought of simply as

a particular kind of scheme-theoretic “neighborhood” of the point whose definition arises

from the classical topology on C.

It is worth clarifying what exactly we mean by “neighborhood” in the case of each of

these objects. The spectrum of the local ring is, on the level of the underlying topological

spaces, contained inX — however, it need not literally be a neighborhood in the traditional

topological sense because it does not necessarily contain any open subset around x. The
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infinitesimal neighborhoods are likewise set-theoretically subspaces of X — indeed, the

underlying space of each is simply the point x — but they are Zariski-closed subschemes

rather than open ones and share few formal similarities with topological neighborhoods,

despite the name. The spectra of the local ring’s completion and, in the case where it

exists, the analytification’s local ring, on the other hand, are not necessarily even inclusions

on the level of topological spaces, though they are so on closed points. However, the maps

from these two schemes and from the spectrum of the local ring to X share an important

property with open inclusions:

Definition 2.1.4 (e.g., [Har77]). A map ϕ : X → Y of schemes or complex-analytic spaces

is said to be flat if, for each point p ∈ X, the induced map OY,ϕ(p) → OX,p of local

rings makes −⊗OY,ϕ(p)
OX,p an exact functor.

The maps from the aforementioned affine schemes to the ambient scheme are all flat,

and as alluded to the same is true for inclusions of open subschemes. Intuitively, flat maps

are those with fibers which are “consistent” in some sense, and hence flatness is typically

taken as the correct notion of what it should mean for a morphism to define a “family”

or “deformation” of its fibers over the target space. We will make this notion precise in

Subsection 2.4.1, once we have developed the necessary machinery.

To conclude our discussion of the local relationship between a finite-type C-scheme

and its analytification, we introduce also the following notion:

Definition 2.1.5 (e.g., [Mat89; Vak23]). A map of schemes is said to be faithfully flat

if it is flat and surjective.

This turns out to be equivalent to the requirement that pullback along the map is not

only exact, as in the case of flatness, but moreover does not make exact any sequence

of sheaves of modules which was not already exact. Note that, by, e.g., Theorem 7.2

of [Mat89], the surjectivity can be checked only on closed points so long as the map in

question is flat. For our purposes, the usefulness of this notion lies in the following fact:
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Proposition 2.1.6. C-algebra maps of the form C{x1, . . . , xa}[y1, . . . , yb](x1,...,xa,y1,...,yb) →

C{x1, . . . , xa, y1, . . . , yb} are faithfully flat.

In particular, let X be a finite-type C-scheme and x ∈ X a closed point. Then, if xan is

the point of Xan mapped to x by Xan → X, the natural map OX,x → OXan,xan is faithfully

flat.

We defer the proof of this result until Subsection 2.4.1; note however, that the first half

follows from the second since faithful flatness is preserved under pullback (e.g., [Mat89]).

The result’s practical utility lies mainly in computing examples; in situations where we are

interested in verifying facts about complex-analytic spaces which arise as analytifications

of finite-type C-schemes, the proposition will be used to show that it is permissible to

carry out the computations of interest algebraically.

2.1.3 Spaces from Sheaves of Algebras

We have already mentioned that, by taking the spectrum of a ring, we can reinterpret it

as a geometric object instead of an algebraic one. We now expand this to objects which

are partially algebraic and partially geometric: sheaves of algebras over a scheme.

Definition 2.1.7 (e.g., [Vak23]). Let X be a scheme and A a quasicoherent sheaf of OX -

algebras. Then the relative spectrum of A, which we denote by SpecA, is the

scheme over X obtained by patching together the maps SpecA(Uα) → Uα for {Uα}

an affine open cover of X.

Note that, by the definition, SpecA → X is an affine morphism — in fact, it is not diffi-

cult to show that Spec(−) gives an anti-equivalence between the category of quasicoherent

sheaves of OX -algebras and the category of schemes affine over X, with quasi-inverse given

by pushforward of the structure sheaf. The independence of the choice of cover can be

verified by showing that SpecA represents the functor of schemes over X which takes

π : Y → X to HomOY
(π∗A,OY ) — see, e.g., Exercise II.5.17 of [Har77], or Section 17.1

of [Vak23].
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There is an analogue of this construction in the analytic setting — however, since

complex-analytic spaces are less versatile than schemes, it requires additional restrictions

on the sheaves of algebras involved.

Definition 2.1.8 ([Hou61]). Let X be a complex-analytic space and A a sheaf of OX -

algebras which is finitely presented — that is, it is locally given as a quotient

of a polynomial algebra sheaf in finitely many variables over OX by finitely many

sections. Then the analytic spectrum of A, which we denote by SpecanA, is the

complex-analytic space over X which is given on any open subscheme U with A|U ∼=

OU [x1, . . . , xk]/(f1, . . . , fℓ) by the complex-analytic vanishing of the holomorphic

functions f1, . . . , fℓ in U × Ck.

As before, this can be verified to be well-defined by showing that the complex-analytic

space thus constructed for a particular open cover represents the appropriate functor of

complex-analytic spaces over X — see [Hou61] for the details.

We conclude by noting that, in the case of a quasicoherent sheaf of algebras which is

moreover N-graded, we can make use of the additional structure to define an additional

object. The following construction is familiar from algebraic geometry:

Definition 2.1.9 (e.g., [Vak23]). Let R be an N-graded ring. Then the homogeneous

spectrum of R is the scheme ProjR over SpecR0 whose underlying set is the set

of all homogeneous prime ideals of R not containing R≥1, with topology generated

by the subsets consisting of all such elements not containing a given homogeneous

element of R and structure sheaf given by assigning to each such set the degree-zero

part of the corresponding localization of R.

In the case where R is a quotient of a polynomial ring by a homogeneous ideal, we can

think of ProjR as the “space of lines through the origin in SpecR” — more generally, we

can think of ProjR as being given by removing Spec(R/R≥1) from SpecR and taking the

quotient by an action of the multiplicative group arising from the grading, an idea we will

revisit in more detail when we define the analogous analytic notion in Subsection 2.2.4.
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As with the usual spectrum, we can define a relative version:

Definition 2.1.10 (e.g., [Vak23]). Let X be a scheme and A a quasicoherent sheaf of

N-graded OX -algebras. Then the relative homogeneous spectrum of A, which

we denote by ProjA, is the scheme over X obtained by patching together the maps

ProjA(Uα) → Uα for {Uα} an affine open cover of X.

The morphisms to X thus obtained when A is moreover finitely generated in degree 1

over OX , called the projective morphisms, are of great importance in algebraic geom-

etry and satisfy many useful properties — for details, see, e.g., Section II.7 of [Har77] or

Chapter 17 of [Vak23]. As mentioned, we defer the discussion of the analogous notion for

graded sheaves over a complex-analytic space to Subsection 2.2.4.

2.2 Vector Bundles, Linear Fiber Spaces, and Cones

As discussed in Section 2.1, we can interpret rings geometrically by means of their spectra,

and likewise well-behaved sheaves of algebras on schemes or complex-analytic spaces by

means of relative or analytic spectra. In general, we should seek geometric intuition for

algebraic objects by similarly associating spaces to them in some natural contravariant

way, such that we think of their elements as functions of some kind on the associated

space.

Example 2.2.1. Consider a finite-dimensional vector space M ∼= Cn over C, regarded as

a finitely-generated module. Then we can think of elements of M as linear functions

on its dual M∨. To realize M∨ geometrically, we use the symmetric algebra

Sym(M) :=
∞⊕
k=0

M⊗k

/〈
a⊗ b− b⊗ a | a, b ∈M

〉
,

where M⊗0 is taken to be C.

Concretely, if v1, . . . , vn form a basis for M , we have Sym(M) ∼= C[v1, . . . , vn].

We can thus recover M∨ as a scheme by taking M∨ = Spec Sym(M), and as a

complex-analytic space by then taking the analytification.
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More generally, if we have a locally free sheaf E of rank n on a scheme or complex-

analytic space X, we can build an associated vector bundle of rank n over X by taking

Spec Sym(E) or Specan Sym(E) respectively, where E is recoverable as the sheaf of linear

forms on the vector bundle — as in the vector space case, we think of this as a geometric

realization of the dual object. In all of these cases, the operations are functorial, and in

fact we can phrase our observations in terms of an anti-equivalence of categories — before

we go into detail, however, it will be useful to introduce the more general version of this

construction for arbitrary coherent sheaves. We will revisit vector bundles after we have

done so, in Subsection 2.2.3, before moving on to the further generality provided by cones

in Subsection 2.2.4.

2.2.1 Linear Fiber Spaces in the C-Analytic Setting

To geometrically interpret coherent sheaves, we will need a notion more general than that

of a vector bundle. We introduce it here, following the exposition in [Gro61b; Fis76].

Definition 2.2.2 ([Gro61b]). Let S be a complex-analytic space. Then the category of

linear fiber spaces over S is defined to be the category of unitary S ×C-modules

in the category of complex-analytic spaces over S. Concretely, this means that a

linear fiber space is given by a complex-analytic space L over S together with maps

L ×S L
+−→ L and (S × C) ×S L

·−→ L over S and a section 0 : S → L of the

projection L → S such that the diagrams corresponding to the module axioms for

the operations + and · commute, where S ×C is a ring in the category of complex-

analytic spaces over S with the usual operations of fiberwise complex addition and

multiplication. Likewise, a map of linear fiber spaces is a map L → L′ of complex-

analytic spaces over S which commutes with both operations on each space, as given

by the commutativity of the appropriate diagrams.

Intuitively, a linear fiber space can be thought of as a generalization of a vector bundle

such that the fibers are allowed to have differing dimensions from point to point. Of

course, the possible failure of the spaces involved to be reduced complicates this picture
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slightly, and should be taken into account when using it for intuition.

As previously alluded to, there is a way to associate to any coherent sheaf on a complex-

analytic space a corresponding linear fiber space:

Proposition 2.2.3. Let S be a complex-analytic space and F a coherent sheaf of OS-

modules. Then Specan Sym(F) is a linear fiber space over S when endowed with the

operations induced by the maps F → F ⊕ F and Sym(F) → Sym(F)[t] given on sections

of F as x 7→ x ⊕ x and x 7→ xt respectively, and this construction is contravariantly

functorial.

Proof (or see [AM86]) The linear fiber space corresponding to a coherent sheaf was

constructed in [Gro61b], while the analytic spectrum of a sheaf of algebras was con-

structed in [Hou61]. For a given coherent sheaf F , we can verify that the construction

of [Gro61b] agrees with the analytic spectrum of the symmetric algebra either by

direct inspection of both constructions or by noting that the former represents the

functor (T
f−→ S) 7→ HomOT -mod(f∗F ,OT ) from complex-analytic spaces over S to

sets and the latter the functor (T
f−→ S) 7→ HomOT -alg(f

∗ SymOS
(F),OT ); these

are naturally isomorphic since Sym(−) commutes with f∗ (e.g., Proposition A2.2 of

[Eis04]) and is the left adjoint to the forgetful functor from sheaves of algebras to

sheaves of modules. That the operations are as claimed can likewise be verified from

the definitions, and functoriality follows by using the functoriality of Specan(−) and

Sym(−) and verifying directly that the resulting maps commute with the operations.

Our general philosophy suggests we should be able to retrieve the coherent sheaf by

considering functions of some kind on the resulting space, and since we are working with

modules we should expect these to be linear. We formalize this as follows.

Definition 2.2.4 (e.g., [Fis76]). Let S be a complex-analytic space and L a linear fiber

space over S. For any open subspace U of S, we set L|U := L ×S U , a linear fiber

space over U , and let HomU (L|U , U ×C) denote the set of homomorphisms of linear

fiber spaces over U as defined in Definition 2.2.2. Then we denote the sheaf of OS-
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modules given by U 7→ HomU (L|U , U ×C) by LS(L) and call it the sheaf of linear

forms on L.

It can be seen straightforwardly that this construction is functorial. That the resulting

sheaf is coherent and that it gives the result we expect when we apply it to the analytic

spectrum of the symmetric algebra are encapsulated in the following result, called the

Fischer-Prill Theorem, which identifies the study of linear fiber spaces with that of

coherent sheaves.

Theorem 2.2.5 (e.g., [Fis76; AM86]). Let S be a complex-analytic space. The contravari-

ant functors Specan Sym(−) and LS(−) define an anti-equivalence between the category

of coherent OS-modules and the category of linear fiber spaces over S.

We will not reproduce the proof, the sketch of which can be found in [Fis76]. A

complete proof based on the results we will review in Subsection 2.2.4 can be found in

[AM86].

The Fischer-Prill Theorem gives us exactly what we hoped for at the outset — a

rigorous way of regarding the algebraic objects under consideration, coherent sheaves on a

complex-analytic space, as collections of functions on associated geometric spaces, in the

fashion of rings and affine schemes.

2.2.2 Linear Fiber Spaces Over Schemes

We now wish to do the same for coherent sheaves in the algebraic context — say, on a

Noetherian scheme. It is not too difficult to formulate a definition of linear fiber spaces

corresponding to the complex-analytic case:

Definition 2.2.6 (cf. Section 1.7 of [Gro61a]). Let S be a Noetherian scheme. Then the

category of linear fiber spaces over S is defined to be the category of unitary

A1
S-modules in the category of schemes over S. Concretely, this means that a linear

fiber space is given by a scheme L over S together with maps L ×S L
+−→ L and

A1
S ×S L

·−→ L over S and a section 0 : S → L of the projection L→ S such that the
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diagrams corresponding to the module axioms for the operations + and · commute,

where A1
S is a ring in the category of schemes over S with the operations induced by

the usual addition and multiplication on A1
Z := SpecZ[t]. Likewise, a map of linear

fiber spaces is a map L→ L′ of schemes over S which commutes with both operations

on each space, as given by the commutativity of the appropriate diagrams.

However, some care must be taken — as we have already seen in Subsection 2.2.1, every

linear fiber space in the complex-analytic setting arises from a coherent sheaf, but, since

schemes are much more versatile objects, this is no longer true in the algebraic setting

without additional restriction. As an easy example, we can take a linear fiber space which

is too large to arise from a coherent sheaf:

Example 2.2.7. Let R = C[x1, x2, x3, . . .] be the polynomial ring in countably many

variables. Then SpecR is a linear fiber space over SpecC with the operations given

by xi 7→ xi ⊗ 1 + 1 ⊗ xi and xi 7→ txi. However, it cannot arise as Spec Sym(F) for

any coherent sheaf F on SpecC — that is, any finite-dimensional C-vector space —

since it is not of finite type over SpecC.

To resolve this, one could restrict the definition of linear fiber spaces to require that

they be of finite type over the base, or work with quasicoherent sheaves, not just coherent

ones. While results along the lines of the Fischer-Prill Theorem 2.2.5 may then be true,

we will not pursue them here — since we are mainly interested in being able to geometri-

cally visualize coherent sheaves, it is enough for our purposes to show an anti-equivalence

between the category of coherent sheaves and the full subcategory of the category of linear

fiber spaces which is the image of the functor Spec Sym(−). We begin by verifying that

this statement makes sense:

Proposition 2.2.8. Let S be a Noetherian scheme and F a coherent sheaf of OS-modules.

Then Spec Sym(F) is a linear fiber space over S when endowed with the operations induced

by the maps F → F ⊕F and Sym(F) → Sym(F)[t] given on sections of F as x 7→ x⊕ x

and x 7→ xt respectively, and this construction is contravariantly functorial.
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Proof We observe that the claims we must verify and the objects under consideration

are all local on S, so we can reduce to the case where S = SpecR is an affine

scheme, for R a Noetherian ring. In this situation, F will be given by a finitely-

generated R-module M (e.g., Proposition II.5.4 of [Har77]), so it suffices to show

that the claimed operations make Sym(M)op a unitary R[t]op-module in the opposite

category of finitely-generated R-algebras and that the construction is functorial; both

claims can be verified directly by diagram chases.

We can likewise define a notion of linear forms, exactly as in the complex-analytic

setting:

Definition 2.2.9. Let S be a Noetherian scheme and L a linear fiber space over S. For

any open subspace U of S, we set L|U := L ×S U , a linear fiber space over U , and

let HomU (L|U ,A1
U ) denote the set of homomorphisms of linear fiber spaces over U .

Then we denote the sheaf of OS-modules given by U 7→ HomU (L|U ,A1
U ) by LS(L)

and call it the sheaf of linear forms on L.

As in the analytic case, the functoriality of LS(−) is immediate. We are now in a

position to show that coherent sheaves correspond to linear fiber spaces of a certain kind:

Theorem 2.2.10. Let S be a Noetherian scheme. The contravariant functors Spec Sym(−)

and LS(−) define an anti-equivalence between the category of coherent OS-modules and a

full subcategory of the category of linear fiber spaces over S.

Proof As in the proof of Proposition 2.2.8, we can verify our claims locally, so we reduce

to the case where S = SpecR for R a Noetherian ring.

We first verify that LS(Spec Sym(−)) is naturally isomorphic to the identity functor

on the category of coherent sheaves of OS-modules. Let M be a finitely-generated

R-module. Then Γ(S,LS(Spec Sym(M))) is the subset of HomR-alg(R[t],Sym(M))

consisting of those ring maps such that the corresponding maps of affine schemes

satisfy the linear fiber space axioms, with the R-module structure such that r · ϕ
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is defined as the precomposition of ϕ with the R-algebra map R[t] → R[t] given by

t 7→ rt. Observe then that HomR-alg(R[t], Sym(M)) ∼= Sym(M) as R-modules —

to show that Γ(S,LS(Spec Sym(M))) ∼= M , we thus need only verify that satisfying

the linear fiber space axioms is equivalent to being homogeneous of degree 1 under

the natural grading of Sym(M).

For an R-algebra map ϕ to satisfy these axioms, it must in particular commute with

scalar multiplication — that is, the following diagram must commute:

R[t] Sym(M)

R[τ, t] R[τ ] ⊗R Sym(M)

ϕ

µ

id⊗ϕ

Here the vertical arrows are the ring maps corresponding to the multiplication maps

A1
S ×S A1

S → A1
S and A1

S ×S Spec Sym(M) → Spec Sym(M). Since the left vertical

map is given by t 7→ τt, this is to say that the element f ∈ Sym(M) corresponding

to ϕ satisfies µ(f) = τf . Letting f =
∑n

d=0 fd be the decomposition of f into

homogeneous parts under the grading of Sym(M), we can see from the definition that

µ(f) =
∑n

d=0 τ
dfd; taking this equality in each degree individually and observing

that τd − τ is always a non-zerodivisor in R[τ ] ⊗R Sym(M) = Sym(M)[τ ] for d ̸= 1

demonstrates that fd = 0 for all d ̸= 1, as desired. Hence every map of linear fiber

spaces corresponds to homogeneous degree-1 element of Sym(M); it is likewise easy

to verify for any such element that the corresponding map will be a morphism of

linear fiber spaces.

As such, Γ(S,LS(Spec Sym(M))) ∼= M , and it is straightforward to verify that the

isomorphism is natural. Since our reasoning can be applied to any distinguished

open subset of S by changing the choice of R, we can see that LS(Spec Sym(M))

is in fact naturally isomorphic to M as sheaves on S = SpecR, as desired. Hence

the category of coherent OS-modules is anti-equivalent to the subcategory of the

category of linear fiber spaces which is the image of Spec Sym(−), and it remains
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only to show that this is a full subcategory by verifying that this functor is surjective

on Hom-sets.

To do so, we observe that, for R-modules M and N , the morphisms Spec Sym(M) →

Spec Sym(N) as S-schemes are precisely the R-algebra maps Sym(N) → Sym(M),

and by the adjunction with the forgetful functor these correspond to R-module

homomorphisms N → Sym(M). A slight generalization of our reasoning above in

the case N = R (and hence Sym(N) ∼= R[t]) then shows that those homomorphisms

corresponding to maps of linear fiber spaces are precisely those which have image

contained in the homogeneous degree-1 part of Sym(M) — that is, M . It can thus

be seen that every map Spec Sym(M) → Spec Sym(N) of linear fiber spaces arises

from the corresponding map N →M of R-modules, completing the result.

Hence we again have a realization of our algebraic objects in terms of functions on a

particular kind of geometric object.

2.2.3 Vector Bundles

In particular, we can now return to vector bundles and provide a link between algebraic

and geometric viewpoints — compare Exercise II.5.18 of [Har77].

Proposition 2.2.11. Vector bundles of rank n and locally free sheaves of rank n corre-

spond under the equivalences of Theorems 2.2.5 and 2.2.10 in the analytic and algebraic

settings.

This is essentially because we can use the isomorphisms S × Cn ∼= Specan Sym(O⊕n
S )

and An
S
∼= Spec Sym(O⊕n

S ) for S a complex-analytic space and Noetherian scheme respec-

tively to show the equivalence of the local trivialization requirements for each type of

object.

For our purposes, there are two linear fiber spaces for which the condition of being

a vector bundle will be especially significant: those corresponding to the tangent and

cotangent sheaves.
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Definition 2.2.12 (e.g., [Har77; Tei77; Vak23]). Let ϕ : X → Y be a map of schemes. Let

ΩX/Y be the quasicoherent sheaf of OX -modules representing the covariant functor

which takes each quasicoherent sheaf F of OX -modules to the set of ϕ−1OY -algebra

sheaf maps d : OX → F satisfying the Leibniz rule d(ab) = ad(b) + bd(a) — such

maps are called derivations. Then ΩX/Y , which we also denote by Ωϕ, is called the

sheaf of relative Kähler differentials, or relative cotangent sheaf, of X over

Y . We call the corresponding space Spec Sym(ΩX/Y ) the relative tangent space

of X over Y .

Similarly, we define ΘX/Y or Θϕ to be the dual sheaf HomOX
(ΩX/Y ,OX) of

ΩX/Y and call it the sheaf of derivations, or relative tangent sheaf, of X over

Y . We call the corresponding space Spec Sym(ΘX/Y ) the relative cotangent space

of X over Y .

The definitions for a map of complex-analytic spaces are similar — however, for

technical reasons, we must define ΩX/Y as the representative of the functor described

only on the category of quasicoherent OX -modules F which are moreover separated

— that is, whose stalks M = Fx for x ∈ X satisfy
⋂∞

k=0m
kM = 0 for m the maximal

ideal in the local ring.

If X is a scheme over a perfect field, such as C, and ϕ is the structure morphism,

or if X is a complex-analytic space and Y is a reduced point, we drop the word

“relative” from the terminology and suppress Y in the notation. In this case, we

denote the tangent space by TX and the cotangent space by T ∗X.

In Proposition 2.3.16, we will introduce an alternate definition which makes it easy to

verify that the cotangent and tangent sheaves are indeed coherent so long as, in the scheme

case, the schemes involved are locally Noetherian. As mentioned, we will be particularly

interested in the case where these sheaves are locally free:

Definition 2.2.13 (e.g., [Har77; Vak23]). Let X be a connected finite-type scheme over a

perfect field or a connected complex-analytic space. If TX is a vector bundle with

rank equal to dimX, we say that X is smooth. If X is not connected, we say that
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it is smooth if and only if all its components are. In this case we call TX and T ∗X

respectively the tangent and cotangent bundles of X.

We say that a morphism X → Y of schemes is smooth of relative dimension

n if it is locally finitely presented and flat of relative dimension n and ΩX/Y is a

vector bundle of rank n — the definition in the complex-analytic case omits the

finite presentation requirement but is otherwise the same.

Smoothness will be important in Chapter 3, where we discuss the theory of stratifica-

tions. For now, we content ourselves with the following generic smoothness result for

algebraic varieties:

Theorem 2.2.14 (e.g., [Vak23]). Let X be an integral finite-type scheme over a perfect

field. Then there exists a dense open subscheme U ⊆ X such that U is smooth.

It is not difficult to see that this result extends to reduced finite-type schemes over

perfect fields which are not necessarily irreducible.

2.2.4 Cones

For the remainder of this chapter our primary interest will be in objects more general

than linear fiber spaces — cones — which retain the multiplication by scalars but need

not have any additive structure. As we will see in the cases of Section 2.3’s normal cone

and Section 3.2’s relative conormal space, these objects play an important role in a variety

of different settings within algebraic and complex-analytic geometry.

We first give the definition and basic facts in the complex-analytic case, as laid out in

[AM86].

Definition 2.2.15. Let S be a complex-analytic space. Then the category of cones

over S is defined to be the category of modules over the monoid-with-zero S × C

in the category of complex-analytic spaces over S. Concretely, this means that a

cone is given by a complex-analytic space C over S together with a map C × C ∼=

(S × C) ×S C
·−→ C over S and a section 0 : S → C such that, when S × C is given
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the usual fiberwise complex multiplication (also denoted ·), the following diagrams

commute:

C× C× C C× C

C× C C

·×idC

idC ×· ·

·

C C

C× C

idC

1×idC
·

C S

C× C C

0×idC 0

·

Likewise, a map of cones is a map ϕ : C → C ′ of complex-analytic spaces over S

such that the following diagram commutes:

C× C C

C× C ′ C ′

·

idC ×ϕ ϕ

·

Intuitively, this is to say that a cone over S is a space over S such that each fiber has a

scaling action of C by multiplication, although as usual the existence of nilpotents means

that the phrasing in terms of fibers is not literally correct.

Per our running theme, there is an anti-equivalence between complex-analytic cones

and a certain kind of algebraic object:

Theorem 2.2.16 ([AM86]). Let S be a complex-analytic space. Then the contravariant

functor Specan(−) gives an anti-equivalence of categories between the category of finitely-

presented quasicoherent sheaves of N-graded OS-algebras with degree-zero part OS and the

category of complex-analytic cones over S.

The scalar multiplication on SpecanA, for A such a sheaf of algebras, is induced by

the map A → A[t] which takes each homogeneous degree-d element a to tda. The sheaf

of homogeneous algebras corresponding to a cone C
π−→ S is recovered by taking, in each

degree d, the subsheaf of π∗OC consisting of those holomorphic functions on which the

C-multiplication acts by dth powers — see [AM86] for details. Note that the requirement

on the degree-zero part serves to ensure that the analytic spectrum is genuinely a cone

over S — if we omit it, taking the analytic spectrum instead gives a cone over SpecanA0.

If a sheaf of algebras A of the sort we are considering is generated in degree 1, we find

in particular that SpecanA is a closed subspace of the linear fiber space Specan Sym(A1)
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— the grading on A tells us exactly that this subspace is invariant under the C-action,

so in this case we can intuitively think of cones as subspaces of linear fiber spaces which

restrict in each fiber to unions of lines through the origin, with the usual caveats about

non-reduced structure. More generally, we have the following analogue to Definition 2.1.10:

Definition 2.2.17 ([AM86]). Let S be a complex-analytic space and A =
⊕∞

d=0Ad a

finitely-presented sheaf of N-graded algebras on S. Then the unique complex-analytic

space over SpecanA0 which is the quotient of the complement of the zero section

in SpecanA by the natural C∗-action is called the analytic homogeneous spec-

trum of A and denoted by ProjanA. If C is a complex-analytic cone, the analytic

homogeneous spectrum of the corresponding sheaf of algebras is called the projec-

tivization of C and denoted by PC.

The construction, the details of which can be found in [AM86], is carried out by charts

exactly as one would expect from that of the algebraic relative homogeneous spectrum

discussed in Subsection 2.1.3. Hence we can think of complex-analytic cones over S as

being the affine cones over projective morphisms to S — if A is generated in degree 1,

then every local choice of n+ 1 such generators gives a local embedding of ProjanA into

S × Pn, and more generally a local choice of homogeneous generators not necessarily in

degree 1 gives a local embedding into some weighted projective space over S.

If a cone does arise from an algebra generated in degree 1, it is useful to note that, for

the purpose of checking flatness, we can work with either a complex-analytic cone or the

corresponding sheaf of algebras. To prove this, we need the following lemma showing that

flatness is an open condition, analogously to Theorem 24.3 of [Mat89] and Theorem IV.9

of [Fri67]:

Lemma 2.2.18. Let ϕ : X → Y be a map of complex-analytic spaces and A a finitely-

presented quasicoherent sheaf of OX-algebras which can be written as a (potentially infinite)

direct sum of coherent OX-modules. Then, for each point x ∈ X and y := ϕ(x), the set of

points in SpecAx where Ax is flat over OY,y is open.
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Proof The proof is by the topological Nagata criterion, for which see Theorem 24.2

of [Mat89]. It proceeds essentially as does the proof of Theorem 24.3 of [Mat89], but

there are two complications to address.

The first is that this proof requires Ax to be p-adically ideal-separated for certain

prime ideals p of OY,y — this can be shown using the hypothesis that A decomposes

as a direct sum of coherent modules, since then Ax is a direct sum of finitely-

generated OX,x-modules. We can verify the separation of each individually, using

the corresponding ideal pOX,x; since this is contained in the maximal ideal, the

separation now follows from the Krull Intersection Theorem (e.g., Corollary 5.4 of

[Eis04]).

The second is that the generic freeness theorem used in [Mat89] does not apply for

Ax over OY,y. Since X is locally a closed subspace of Cn for some n, the required

analogue is essentially Theorem II.1 of [Fri67], with the important difference that we

now use our finite-type sheaf A of algebras instead of a coherent sheaf. This does not

introduce any complications, however, other than requiring us to apply the algebraic

generic flatness lemma slightly differently, using the fact that the associated graded

of A with respect to the chosen ideal is itself a finite-type algebra; once we have thus

guaranteed a consistent choice of localization, the proof can proceed unaltered on

each coherent summand individually.

We can now prove the claimed result:

Proposition 2.2.19. Let ϕ : X → Y be a map of complex-analytic spaces, C a complex-

analytic cone over X, and A the corresponding sheaf of algebras on X. Suppose that A is

generated in degree 1. Then C is flat over Y if and only if A is flat over ϕ−1OY .

Proof Since flatness is a local property, we can suppose without loss of generality that

A = OX [t0, . . . , tn]/(f1, . . . , fr) for functions f1, . . . , fr homogeneous in the ti. Hence

C is the closed subspace of X × Cn+1 cut out by these functions.

Consider a point c ∈ C, let x ∈ X be the point in X it is mapped to, and set
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y := ϕ(x). Let R := OY,y, S := OX,x, and T := OC,c be the local rings and m, n,

and o be their respective maximal ideals. Observe that the stalk (ϕ−1OY )x = R

and, if we let c0, . . . , cn be the Cn+1-coordinates of c, we have T = (S ⊗̂ C{t0 −

c0, . . . , tn − cn})/(f1, . . . , fr), where ⊗̂ denotes the analytic tensor product of

convergent power series rings (e.g., [Fis76]). If we let T̃ denote the localization of

the stalk Ax = S[t0, . . . , tn]/(f1, . . . , fr) at the maximal ideal n+(t0−c0, . . . , tn−cn),

Proposition 2.1.6 and the preservation of faithful flatness under pullback imply that

the natural map T̃ → T is faithfully flat.

Suppose that A is flat over ϕ−1OY . Then, for each such c, we have that Ax is flat

over R and hence T̃ is as well by the flatness of localization; since T̃ → T is flat, it

follows that T is flat over R. Since c was arbitrary, we find that C is flat over Y , as

desired.

On the other hand, suppose that A is not flat over ϕ−1OY . Let x be a point where,

when (R,m) and (S, n) are as before, T̂ := Ax is not flat over R. Then, by Lemma

2.2.18, which we can apply since A is the direct sum of its (coherent) graded pieces,

the non-flat locus of Spec T̂ over SpecR is closed in Spec T̂ ; we claim that it contains

the point corresponding to n+(t0, . . . , tn). By hypothesis, the non-flat locus contains

at least one point p; let p be the prime ideal corresponding to p and suppose first

that p ̸⊇ (t0, . . . , tn).

Then, without loss of generality, t0 ̸∈ p, so p is contained in Spec T̂t0 . However, it is

not difficult to see that the natural map (T̂t0)0[t
±1] → T̂t0 taking t to t0, where (T̂t0)0

is the degree-zero part, is an isomorphism with inverse given by ti 7→ t · ti/t0. Hence

Spec T̂t0 is the trivial punctured line bundle over Spec(T̂t0)0, and thus faithfully flat

over this space as well. Setting p′ = pT̂t0 ∩ (T̂t0)0, we then find that Spec(T̂t0)0 is not

flat over R at the point corresponding to p′ by our hypothesis on p and the flatness

of the bundle map, and so Spec T̂ ⊃ Spec T̂t0 is not flat over R at the generic point

of the preimage of the vanishing of p′ by the faithfulness result. Let p′′ = p′T̂t0 be

the prime ideal of T̂ corresponding to this point; it is clear from the construction
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that p′′ is homogeneous.

Thus, by taking p′′ instead, we can suppose without loss of generality that p is

homogeneous. In particular, p + (t0, . . . , tn) cannot be the unit ideal since p itself is

not, so the closure of p meets the vanishing of (t0, . . . , tn). Since the non-flat locus is

closed, it follows that there are points of this vanishing at which Spec T̂ is not flat.

On the other hand, if our original supposition does not hold and p ⊇ (t0, . . . , tn),

this is obviously true as well. However, since T̂ /(t0, . . . , tn) ∼= S and every closed

subset of SpecS contains the point corresponding to n + (t0, . . . , tn), we then see

that the non-flat locus contains this point as desired.

Denoting this point by c, we then see with our usual notations that the localization

T̃ of T̂ at c is not flat over R. By the faithful flatness of T̃ → T = OC,c given in

Proposition 2.1.6, we can see that the complex-analytic cone C is not flat over Y at

c. This proves the result.

2.3 Tangent and Normal Cones

We are now ready to introduce the titular object of this chapter, the normal cone. With

the machinery of Subsection 2.2.4, the definition is easy to state:

Definition 2.3.1. Let i : Y ↪→ X be a closed inclusion of schemes or complex-analytic

spaces, with I the sheaf of ideals on X cutting out Y . Then the associated graded

sheaf of I in OX is the sheaf of OX -algebras given by

grI OX :=
∞⊕
k=0

Ik/Ik+1

with the product structure induced by the natural multiplication maps Ip ⊗OX

Iq → Ip+q. The cone over Y corresponding to i∗ grI OX (which is in fact equal

to i−1 grI OX , since the associated graded is already an OX/I = i∗OY -module) is

called the normal cone to Y in X and denoted by CYX.
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If f is a section of OX over an open set U not contained in
⋂∞

k=0 Ik(U), we call

its equivalence class in (Ik/Ik+1)(U) ⊆ (grI OX)(U), for k largest such that f ∈ Ik,

its initial form, and denote it by inI(U) f . If it does not fulfill this condition, we

set inI(U) f := 0.

Note that the definition of the normal cone in the complex-analytic case relies on

the associated graded sheaf being finitely presented — this is a consequence of the Oka

Coherence Theorem 2.1.1.

We will discuss the geometric intuition in detail momentarily in Subsections 2.3.1 and

2.3.2. In doing so, we will make use of the following construction, which realizes the normal

cone as a deformation of the ambient space.

Definition 2.3.2 (e.g., [Eis04]). Let i : Y ↪→ X be a closed inclusion of schemes or

complex-analytic spaces, with I the sheaf of ideals on X cutting out Y . Then the

Rees algebra sheaf of OX with respect to I is the subsheaf of the sheaf OX [t±1]

of OX -algebras given by

R(OX , I) := OX [t, t−1I] = OX [t] +

∞∑
k=1

Ikt−k ⊆ OX [t±1].

If X is a scheme over a field F, we call the natural map ϕ : SpecR(OX , I) →

A1
F = SpecF[t] the deformation to the normal cone, and similarly the map

ϕ : SpecanR(OX , I)
t−→ C if X is a complex-analytic space.

As with the normal cone itself, the well-definedness in the complex-analytic case follows

from the Oka Coherence Theorem 2.1.1.

The terminology “deformation to the normal cone” is justified by the following obser-

vations. First, we note that the fiber of ϕ over any nonzero F-rational closed point of A1
F

or, respectively, any nonzero point of C is simply X, since taking such a fiber corresponds

to setting t equal to a nonzero, hence invertible, constant value. On the other hand, we

can see by considering the quotient of R(OX , I) by t that the fiber over the origin in A1
F or

C is precisely CYX. Thus ϕ realizes the normal cone as the special fiber of a map whose



28

general fiber is the ambient space; to think of this as a deformation, we need only verify

flatness, as discussed in Subsection 2.1.2.

Proposition 2.3.3 (e.g., [Eis04]). Let i : Y ↪→ X be a closed inclusion of schemes over a

field or complex-analytic spaces, with I the sheaf of ideals on X cutting out Y . Then the

map ϕ of Definition 2.3.2 is flat.

Proof The scheme case is immediate by working locally and using Corollary 6.11 of

[Eis04]. In the complex-analytic case, we can see that ϕ defines the trivial X-bundle

over C∗, so we need only verify flatness at points over the origin in C.

For a point x ∈ X, if we let R := OX,x, m the maximal ideal of R, and I = Ix, we

have R(OX , I)x = R(R, I). This is a finitely-generated R[t]-algebra with generators

g̃i := t−1gi for g1, . . . , gk generators of I; the points p of SpecanR(OX , I) lying over

both x and the origin in C then correspond to ideals of the form p = m + (t, g̃1 −

v1, . . . , g̃k−vk) for values v1, . . . , vk satisfying the relations. By Proposition 2.1.6 and

the preservation of flatness under pullback, the map R(R, I)p → OSpecanR(OX ,I),p is

flat; since t is a non-zerodivisor in R(R, I)p by the algebraic case of the theorem, it

is then a non-zerodivisor in OSpecanR(OX ,I),p by flatness. Since C{t} is a principal

ideal domain with maximal ideal generated by t, this proves the result by Corollary

6.3 of [Eis04].

Hence, as a first piece of geometric intuition about the normal cone, we can see that

the ambient space X can be deformed to it — this gives, for instance, natural results on

the dimensions of its fibers over points of Y (e.g., Theorem 10.10 of [Eis04]).

2.3.1 Intuition for the Tangent Cone

We now begin building more detailed geometric intuition by starting with the special

case where Y is a single point in X. Consider the situation of a point x in a scheme or

complex-analytic space X, letting R = OX,x be the local ring of X at x and m its maximal

ideal.
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As discussed in Subsection 2.1.2 following Definition 2.1.3, the first-order infinitesimal

neighborhood SpecR/m2 carries information about the values and first derivatives of germs

of functions on X at x. Hence, if we consider only those elements of R/m2 which vanish at

x — that is, elements of the maximal ideal m/m2 — the information we obtain is precisely

that of the first derivatives of such function germs alone. This motivates the following

standard construction, which algebro-geometrically recovers and extends a familiar notion

from differential geometry:

Definition 2.3.4 (e.g., [Har77]). Let X be a scheme (or complex-analytic space), x ∈ X

a point, R = OX,x, and m the maximal ideal of R, with κ = R/m the residue

field. Then the Zariski tangent space to X at x is the κ-vector space TxX :=

Spec Sym(m/m2), where Sym(−) is taken over κ. For X locally Noetherian at x, if

dimTxX = dim SpecOX,x, we say that x is a regular point of X; otherwise, when

dimTxX > dim SpecOX,x, we say that it is a singular point.

In the complex-analytic setting, the regular points are precisely those around which

the space is a manifold, with the Zariski tangent space recovering the usual one — note

that here we are not considering non-reduced spaces to be manifolds. We introduced an

analogue to the tangent bundle for a scheme over a perfect field already in Definition

2.2.12, and as one would expect the fiber of this space over each point will turn out to

be the Zariski tangent space — we will discuss this, as well as the relationship between

regularity and smoothness, in Subsection 3.1.1.

Throughout this subsection, we will illustrate the concepts under consideration using

the example of the nodal cubic:

Example 2.3.5. Let X := SpecC[x, y]/(y2−x2(x+1)) ⊂ A2
C = SpecC[x, y], as depicted in

Figure 2.1. Now, at any closed point p := (a, b) of A2
C, corresponding to the maximal

ideal m := (x− a, y− b) of C[x, y], we can see that m/m2 = C(x− a)⊕C(y − b) is a

2-dimensional vector space over the residue field C[x, y]/(x−a, y−b) ∼= C, with basis

given by the generators of m. As such, the tangent space TpA2
C = Spec Sym(m/m2)

is a 2-dimensional vector space as well.
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1

Figure 2.1: The nodal cubic curve of Examples 2.3.5, 2.3.7, and 2.3.8.

If p ∈ X, which is to say b2 − a2(a + 1) = 0, we can see by using the usual

identification of ideals of a quotient ring with ideals of the original ring that the

tangent space TpX is isomorphic to Spec Sym(m/(m2 + I)) for I := (y2−x2(x+ 1)).

Since y2 − x2(x + 1) = ((y − b) + b)2 − ((x − a) + a)2((x − a) + a + 1), which is

equivalent modulo m2 to 2b(y − b) + b2 − a2(x − a) − (2a(x − a) + a2)(a + 1) =

2b(y − b) − (3a2 + 2a)(x − a). If either b or (3a + 2)a is nonzero, then, we find

that m/(m2 + I) is a 1-dimensional quotient of m/m2 and so TpX is a 1-dimensional

subspace of TpA2
C, meaning that p is a regular point of X.

Since the equality 3a + 2 = 0 implies that b is nonzero for (a, b) a point on X,

we can see that the only point where this will not hold is the origin in the plane.

For this point, we have I ⊂ m2 and so TpX = TpA2
C is the full 2-dimensional tangent

space of the ambient plane, making p a singular point of X. Figure 2.2 illustrates

these findings.

Our intuition for the tangent cone, and hence normal cones more broadly, begins by

considering the origin in the above example. As we have seen, the Zariski tangent space

here is 2-dimensional — that is, every direction in the ambient plane is considered by our

definition to be tangent to the curve. This is exactly as it must be, if we want our tangent

spaces to be vector spaces, and yet there is something that does not seem to be precisely

captured by the tangent space — there are two directions in particular which are somehow
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1

Figure 2.2: The nodal cubic with Zariski tangent spaces at select points.

“more tangent” to the curve, one corresponding to the limiting tangent line along each

branch. This idea is captured by the following definition:

Definition 2.3.6 (e.g., [Eis04; Vak23]). Let X be a scheme or complex-analytic space and

x ∈ X a closed point. Then the tangent cone to X at x is the normal cone C{x}X

to the closed subscheme {x} in X, as described in Definition 2.3.1. For simplicity,

we denote this by CxX.

In the case of a non-closed point, we can make the analogous definition by working in

the spectrum of the local ring, but we restrict ourselves to closed points for simplicity. We

can see by, for example, considering generators of the maximal ideal m in the local ring

that the natural map Sym(m/m2) → grmOX,x is surjective — hence, we have a natural

closed inclusion CxX ↪→ TxX and so it makes sense to discuss the tangent cone as a

subspace of the tangent space. We can see in the case of our prior example that it does

in fact capture the limiting tangent lines along each curve branch:

Example 2.3.7 (continuation of Example 2.3.5). As before, we work with the plane curve

X := SpecC[x, y]/(y2 − x2(x+ 1)) ⊂ A2
C = SpecC[x, y], this time restricting our at-

tention to the singular point at the origin. Let m := (x, y) be the ideal corresponding

to this point.

Then, by our prior computations, Sym(m/m2) = C[x̄, ȳ]. Letting I := (y2−x2(x+

1)) as before and setting R := C[x, y]/I, we can see that grmR is the quotient of this



32

algebra given in each degree d by md/(md+1 + I ∩md); hence, since, y2−x2(x+ 1) is

in m2 and congruent modulo m3 to y2 − x2, we find that grmR = C[x̄, ȳ]/(ȳ2 − x̄2).

Therefore, this ring’s spectrum CpX is the union in TpX of the lines ȳ = x̄ and

ȳ = −x̄, as illustrated in Figure 2.3.

1

Figure 2.3: The tangent cone to the nodal cubic in the tangent space at the origin.

To see why this should be true, we turn to our deformation to the tangent cone, as

given in Definition 2.3.2. We will again discuss our chosen example, the nodal cubic,

although the intuition we develop will largely apply in general.

Example 2.3.8 (continuation of Examples 2.3.5 and 2.3.7). Again we letR := C[x, y]/(y2−

x2(x+ 1)), X := SpecR ⊂ A2
C = SpecC[x, y] and m := (x, y). Then the deformation

to the tangent cone at the origin is the map of ring spectra induced by C[t] →

R(R,m) := R[t, t−1x, t−1y] ⊂ R[t±1].

To see why the tangent cone, which is the fiber of this map over t = 0, captures

the limiting tangent lines at the origin, we proceed as follows. Regard R(R,m) as

the quotient of R[t, x̃, ỹ] by the kernel of the map C[t, x̃, ỹ] → R[t±1] taking x̃ to

t−1x and ỹ to t−1y. This gives a closed embedding of the deformation’s total space

into A3
C; consider the fibers of this embedding over the points of SpecC[t].

Over any point other than the origin, as we have discussed, the fiber of the defor-

mation is simply the plane curve SpecR := SpecC[x, y]/(y2 − x2(x+ 1)). However,

if we use the coordinates x̃ and ỹ for the plane instead of x and y, the embedding
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into the plane changes as we vary t. Starting at t = 1, for example, we find that our

new coordinates x̃ and ỹ agree with the old ones, but, e.g., shrinking t moves every

point with fixed (x, y) coordinates farther from the origin — for instance, at t = 1

the point (x, y) = (1,
√

2) on our curve has (x̃, ỹ) coordinates (1,
√

2), but at t = 1
2

the same (x, y) pair gives us (x̃, ỹ) = (2, 2
√

2). That is, since (x̃, ỹ) = (t−1x, t−1y),

changing to our new coordinated system “zooms in by a factor of t−1”.

The fiber over the origin, then, can be thought of as the result of “zooming in

infinitely far”, and naturally this straightens each curve branch into its corresponding

tangent line. This process is depicted in Figure 2.4.

1

Figure 2.4: The nodal cubic deforming to its tangent cone at the origin through
zooming in.

Hence we see that the tangent cone is the result of “zooming in so far that the space

is straightened into a cone”, an intuition which will hold in general — note, however,

that despite this description the tangent cone does not truly sit inside the hierarchy of

“neighborhoods” described in Subsection 2.1.2, since the natural map CxX → X factors

through x and hence does not meaningfully witness the relationship between the structure
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of CxX and the surroundings of x in X. Instead, it is perhaps best to think of the tangent

cone as a simplification of the spectrum of the completed local ring which sits somehow

“beside” it, in the sense that this ring spectrum deforms to the tangent cone — note

that passing to the completion of the local ring does not alter the tangent cone since the

inclusions of the infinitesimal neighborhoods factor through the completion spectrum and

the tangent cone depends only on the infinitesimal neighborhoods. Indeed, we can see that

the degree-d part of the associated graded ring defining the tangent cone is the kernel of the

ring map corresponding to the inclusion from the (d−1)st-order infinitesimal neighborhood

into the dth-order infinitesimal neighborhood — that is, just as m/m2 captures exactly the

first-order derivative information of functions at the point corresponding to m, md/md+1

captures the dth-order derivative information. Hence the tangent cone and the completed

local ring provide two different ways of encapsulating the derivative information of all

orders in a single algebro-geometric object.

2.3.2 Intuition for the Normal Cone

Now we adapt these observations for normal cones of arbitrary closed subschemes or

complex-analytic subspaces. We begin with an analogue for the Zariski tangent space:

Definition 2.3.9 (e.g., [Har77; Vak23]). Let i : Y ↪→ X be a closed inclusion of schemes or

complex-analytic spaces, with I the sheaf of ideals on X cutting out Y . Then I/I2 is

called the conormal sheaf of Y in X; we call the corresponding linear space NYX

over Y , given by Spec Sym(i∗I/I2) in the algebraic setting and Specan Sym(i∗I/I2)

in the analytic one, the normal space to Y in X.

Note that, as long as OX is coherent — in particular, if X is a Noetherian scheme

or complex-analytic space — the conormal sheaf will be as well. In the case of a closed

embedding of complex manifolds, this definition recovers the usual normal bundle from

differential geometry; however, in general I/I2 need not be locally free on Y , so NYX is

a linear fiber space with potentially varying fiber dimension rather than a vector bundle.

We will discuss the circumstances under which the normal space is a vector bundle in
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Subsection 2.4.2.

The first intuition we might draw from the manifold case is that, loosely, the normal

space captures information about “tangent directions in X perpendicular to Y ”, just as

the Zariski tangent space captures information about all directions tangent to X at a given

point, with the caveat that we do not work with a metric and so the fiber of NYX over

a given point y of Y is more akin to a quotient than a subspace of TyX. However, even

this is somewhat misleading — although there does exist a natural map TyX → NYX|y,

it need not be surjective in general, as the following example shows.

Example 2.3.10. Let X := A2
C = SpecC[x, y], I := (x, y)2 = (x2, xy, y2), and Y :=

SpecC[x, y]/I. Then, letting p be the origin in X, we can see that the tangent

space TpX = Spec Sym((x, y)/(x, y)2) = Spec Sym(Cx̄ ⊕ Cȳ) is a plane, as usual.

On the other hand, NYX is the spectrum of the symmetric algebra over C[x, y]/I

of I/I2 = (x2, xy, y2)/(x4, x3y, x2y2, xy3, y4). Letting g0 := x2, g1 := xy, and g2 :=

y2, we can see that this algebra is given by (C[x, y]/I)[g0, g1, g2]/(yg0 − xg1, yg1 −

xg2, g1
2−g0g2). Hence NYX|p is given by SpecC[g0, g1, g2]/(g1

2−g0g2). The natural

map TpX → NYX|p arises from the inclusion I ↪→ (x, y); composing this with the

quotient (x, y) → (x, y)2 gives a map which sends each element of I2 and of (x, y)I

to zero, so we obtain a map I/(I2 + (x, y)I) → (x, y)/(x, y)2 inducing the natural

map TpX → NYX|p under Spec Sym(−). Since I ⊆ (x, y)2, however, we can see

that the module map is the zero map, so TpX is sent to the origin in NYX|p.

Hence the normal space in fact captures something slightly subtler than just perpen-

dicular tangent directions — some amount of higher-order information is included as well.

As with the relation between the tangent cone and tangent space described in Sub-

section 2.3.1, the normal cone, as given in Definition 2.3.1, has a natural closed in-

clusion CYX ↪→ NYX over Y into the normal space, given by the natural surjection

Sym(i∗I/I2) → i∗ grI OX of OY -algebras. We should thus likewise think of CYX as a

refinement of NYX giving, roughly, information about the perpendicular directions which

“actually come from X”. Similarly, we think of the deformation to the normal cone given
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in Definition 2.3.2 as “straightening X out in directions perpendicular to Y ” — this intu-

ition is particularly clear when X and Y are smooth, and so we can locally think of the

deformation as coming from a parameterized change of coordinates as in Example 2.3.8.

For an illustration in a slightly less mundane case, consider the following modification of

Examples 2.3.5, 2.3.7, and 2.3.8:

Example 2.3.11. Let R := C[x, y, z]/(y2 − x2(x + z)), so that X := SpecR is a closed

subscheme of A3
C. Note that the intersection of X with the plane {z = 1} gives

the nodal cubic of the previous examples, and more generally setting z equal to

values other than zero gives us a family of nodal cubics which degenerates to the

cusp SpecC[x, y]/(y2 − x3) at z = 0. Let Y := {x = y = 0} be the z-axis in

X. Then, if we let I := (x, y)R be the ideal cutting Y out in X, we find that

grI R = (C[z])[x̄, ȳ]/(ȳ2 − zx̄2). Thus we can verify that, in this specific case, the

fiber of the normal cone CYX over any closed point {z = z0} of the z-axis is simply

the tangent cone to the plane curve given by X∩{z = z0} at the origin. Likewise, the

deformation to the normal cone of Definition 2.3.2 can in this instance be interpreted

in terms of taking a change of variables to “zoom in with respect to x and y” while

leaving z fixed.

Hence, in nice cases, we can think of the normal cone as giving a relative version of

the tangent cone, although, as Example 2.3.10 demonstrates, this is not the whole story.

In Subsection 2.3.1, we related the tangent cone at a closed point to the infinitesimal

neighborhoods of Definition 2.1.3. As it turns out, this can be done for the normal cone

more generally, once we have defined an appropriate notion of infinitesimal neighborhoods

of a closed subscheme:

Definition 2.3.12 (e.g., [Har77]). Let i : Y ↪→ X be a closed inclusion of schemes or

complex-analytic spaces, with I the sheaf of ideals on X cutting out Y . Then, for

any integer k ≥ 0, the kth-order infinitesimal neighborhood of Y in X is the

closed subspace of X cut out by the ideal sheaf Ik+1.
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These subspaces clearly have the same underlying set as Y , but provide successively

more infinitesimal information in directions outside of Y as we thicken them by increasing

k. As in the case of the tangent cone, the graded pieces of the algebra sheaf defining

CYX capture exactly the differences between successive infinitesimal neighborhoods, and

so the normal cone as a whole encapsulates the data of all infinitesimal neighborhoods —

attempting to do this by analogy to the completion, on the other hand, leads to the notion

of formal schemes (e.g., Section II.9 of [Har77]), which we will not pursue here.

As an example of this principle, we obtain the following straightforward result on the

flatness of infinitesimal neighborhoods:

Proposition 2.3.13 ([Hof]). Let π : X → S be a map of schemes or complex-analytic

spaces and Y ⊆ X the closed subspace cut out by a sheaf of ideals I. Then the normal

cone CYX is flat over S if and only if the k-th order infinitesimal neighborhoods of Y in

X are flat over S for all integers k ≥ 0.

Proof By Proposition 2.2.19 in the complex-analytic case and the definition of flatness

in the algebraic case, the flatness of the normal cone over S is equivalent to that

of the associated graded sheaf of algebras grI OX over π−1OY . Since the tensor

product distributes over direct sums, the flatness of the normal cone over Y is hence

equivalent to that of Ik/Ik+1 over π−1OY for all k ≥ 0, which is to say of the flatness

of Dk := (Ik/Ik+1)p over R := OY,π(p) for all k ≥ 0 at each point p of X. Hence

we must show that this is equivalent to the flatness of Jk := (OX/Ik+1)p over R for

each k ≥ 0 at each such point; therefore, we fix such a p for the remainder of the

proof.

In general, the flatness of a module M over R is equivalent to the vanishing of

TorR1 (M,N) for all R-modules N and hence of TorRi (M,N) for all integers i ≥ 1 and

all R-modules N . We can then prove each direction of the equivalence by applying

the long exact sequence in Tor to the short exact sequences

0 → Dk → Jk → Jk−1 → 0
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for k ≥ 0; this gives us the exactness of the sequences

TorR2 (Jk−1, N) → TorR1 (Dk, N) → TorR1 (Jk, N) → TorR1 (Jk−1, N)

for any R-module N . It is then immediate that the flatness of the infinitesimal

neighborhoods over S, which is to say of the Jk over R, implies that of the normal

cone.

The reverse implication can be proven by induction on k — suppose that the normal

cone is flat over S, so that all of the Dk are flat over R. Then, since J0 = D0, J0 is

flat over R as well. Now suppose that Jk−1 is flat over R — since Dk is as well by

hypothesis, the exact sequence above gives us TorR1 (Jk, N) = 0 for all R-modules N ,

proving the result.

This inspires us to make the following definition:

Definition 2.3.14. Let π : X → S be a map of schemes or complex-analytic spaces and

Y ⊆ X a locally closed subspace. Then we say that the embedding Y ↪→ X is flat

over S if every infinitesimal neighborhood of Y in X is flat over S (or, equivalently,

CYX is).

We now have the following result on the behavior of the normal cone under pullback:

Lemma 2.3.15 ([Hof]). Let π : X → S be a map of schemes or complex-analytic spaces

and Y ⊆ X a locally closed subspace. Let ϕ : S′ → S a map of schemes or complex-analytic

spaces respectively and suppose either that the embedding Y ↪→ X is flat over S or that ϕ

itself is flat. Then the formation of the normal cone commutes with the pullback — that

is, ϕ∗(CYX) = Cϕ∗Y (ϕ∗X).

The proof is straightforward and can be found in [Hof].

We conclude by noting that the conormal sheaf and normal space of Definition 2.3.9

give rise to an alternate definition of the relative cotangent sheaf and relative tangent

space introduced in Definition 2.2.12:
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Proposition 2.3.16 (e.g., [Har77; Loo84]). Let X → Y be a map of schemes or complex-

analytic spaces. Then, if we let ∆ : X → X×Y X be the diagonal map, ∆ is a locally closed

embedding. Hence it is cut out by an ideal sheaf I in some open subset U of X ×Y X;

calling the factorization X → U of ∆ through the open subset ∆ as well in a slight abuse

of notation, we then have ΩX/Y
∼= ∆∗(I/I2) and so the relative tangent space of X over

Y is simply the pullback of the normal space to the diagonal.

In particular, this makes the coherence of ΩX/Y clear if the spaces involved are complex-

analytic or are locally Noetherian schemes.

2.4 Algebro-Geometric Applications of Normal Cones

We conclude the chapter by surveying some uses of normal cones in algebraic geometry.

We would be remiss not to mention the importance of these objects to intersection theory,

for which see [Ful98] — however, this is well-known, and we will focus instead on giving

reinterpretations of basic constructions and results in terms of normal cones.

2.4.1 Flatness

As we have already discussed in Subsection 2.1.2, flatness is the usual notion of what it

means for a map of schemes or complex-analytic spaces to define a “deformation” or “fam-

ily” of objects, and plays a central role in many algebro-geometric constructions. Despite

this, its Definition 2.1.4 is stated very algebraically, and the full geometric consequences

can be notoriously difficult to parse.

However, as discussed in the Appendix of [Hir77], there is an equivalent description

of flatness which is purely geometric, at least in the case of complex-analytic spaces or

locally Noetherian schemes. This is given by the following theorem:

Theorem 2.4.1 (e.g., [Hir77] or Theorem 22.3 of [Mat89]). Let (R,m) → (S, n) be a

local homomorphism of Noetherian local rings, κ = R/m the residue field, X = SpecS

and Y = SpecR the corresponding schemes with closed points x and y respectively, and
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f : X → Y the corresponding map of schemes. Then S is flat over R if and only if

the natural map grmR ⊗κ S/mS → grmS S is an isomorphism — that is, if and only if

CXyX
∼= Xy ×y CyY by the natural map for Xy := f−1(y) the fiber over the closed point.

Since flatness is defined in terms of maps of local rings, this is to say that, in either

of the contexts we are interested in, flatness of a map can be defined as the triviality

of the normal cone to each fiber over the tangent cone to the corresponding

point in the base — the above theorem establishes this fact locally at each point of

the source, and it is not difficult to verify that the trivialization glues together along each

fiber. This is to say that, although flat maps need not be locally trivial in the manner of

fiber bundles, they are precisely the maps which become locally trivial when “things are

straightened out in the horizontal directions” in the sense given by taking normal cones.

Armed with this description, we can now prove Proposition 2.1.6:

Proof of Proposition 2.1.6 It is enough to observe that the map of associated graded

rings with respect to the maximal ideal (x1, . . . , xa, y1, . . . , yb) of the domain induced

by C{x1, . . . , xa}[y1, . . . , yb](x1,...,xa,y1,...,yb) → C{x1, . . . , xa, y1, . . . , yb} is an isomor-

phism, since both associated graded rings are simply C[x̄1, . . . , x̄a, ȳ1, . . . , ȳb] and

the induced map is the identity. Hence, by Theorem 2.4.1, the map is flat, and

so for faithful flatness it is enough to verify surjectivity on closed points, which is

immediate for a local map of local rings such as this one.

That is, the faithful flatness follows since both rings’ spectra have the same tangent

cone at the closed point.

2.4.2 Regular Embeddings

As we have mentioned in Subsection 2.3.2, the intuition for the normal cone is compara-

tively simple for an embedding Y ↪→ X of complex-analytic manifolds or smooth varieties

over C — in this case, CYX = NYX is the vector bundle over Y given as the quotient

of the restricted tangent bundle TX|Y by the tangent bundle TY . We can then ask
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which closed embeddings of schemes and complex-analytic spaces “look like embeddings

of manifolds” in the sense that the normal cone is a vector bundle.

Definition 2.4.2 (e.g., [Ful98; Vak23]). Let i : Y ↪→ X be a closed embedding of locally

Noetherian schemes or complex-analytic spaces, with I the corresponding ideal sheaf.

We say that i is a regular embedding if, for each point y ∈ Y , Iy is generated

by a finite-length regular sequence (for which see, e.g., Chapter 17 of [Eis04]) in

OX,y.

Note that it is equivalent to ask that I be generated by a regular sequence in an open

neighborhood of each point (e.g., Exercise 9.5.G of [Vak23]). Such embeddings are of great

practical importance in algebraic geometry — aside from their use in intersection theory,

for which see [Ful98], they also give rise to much-used notions such as depth and Cohen-

Macaulayness, for which see, e.g., [Eis04]. The following result characterizes them in

geometric terms by showing that they are exactly those for which the normal cone is a

vector bundle:

Proposition 2.4.3 ([Ree57]; also, e.g., Exercise 17.16 of [Eis04]). A closed inclusion

Y ↪→ X of locally Noetherian schemes or complex-analytic spaces is a regular embedding

if and only if CYX is a vector bundle over Y . Moreover, a given choice of local generators

for the ideal sheaf of Y in X will form a regular sequence exactly when the generators’

initial forms give a local basis of sections for CYX.

In particular, our notion of the regularity of a scheme at a point from Definition 2.3.4

can be rephrased. Let (R,m, κ) be a local ring, setting X := SpecR and x := Specκ, and

consider the surjection Sym(m/m2) → grmR of κ-algebras. Since its kernel is generated in

degrees 2 and higher by construction, we can see that CxX is a vector space if and only

if CxX = TxX. On the other hand, since TxX, as an affine space over κ, is reduced and

irreducible, we can see that its dimension will be the same as that of the closed subscheme

CxX if and only if, again, the two are again equal. By the flatness of the deformation to

the normal cone (Proposition 2.3.3), however, dimCxX is precisely the local dimension of

X by, e.g., Theorem 10.10 of [Eis04].
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Hence a scheme is regular at a point precisely when the inclusion of the point is a

regular embedding — for non-closed points, we make sense of this by working with the

embedding into the spectrum of the corresponding local ring. Together with Theorem

2.4.1, this gives us a powerful dimensional characterization of flatness for maps of regular

schemes:

Theorem 2.4.4 (e.g., Theorem 18.16 of [Eis04]). Let (R,m) → (S, n) be a local homomor-

phism of regular local rings. Then S is flat over R if and only if dimS/mS = dimS−dimR.

The proof and most general statement of this theorem use the machinery of Cohen-

Macaulay rings, so we omit them. However, we do note that it generalizes to the following

important class of local rings.

Definition 2.4.5. Let (R,m) be a Noetherian local ring. We say that R is a local com-

plete intersection ring if the spectrum Spec R̂ of its completion can be realized

as the special fiber of a flat map of regular local rings.

Proposition 2.4.6. Theorem 2.4.4 remains true if we relax our requirement on S so that

it is required only to be a local complete intersection ring, not necessarily a regular one.

2.4.3 Blowups

The following construction is ubiquitous in algebraic geometry:

Definition 2.4.7 (e.g., [Har77; Eis04; Vak23]). Let i : Y ↪→ X be a closed inclusion of

schemes or complex-analytic spaces, with I the ideal sheaf cutting it out. Then we

define the blowup algebra sheaf of Y in X by

BI OX :=
∞⊕
k=0

Ik

with the obvious multiplication making this a sheaf of graded algebras. In the

algebraic and complex-analytic cases respectively we define by BlY X := ProjBI OX

and BlY X := ProjanBI OX the blowup of X along Y .
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To understand the geometric intuition for this construction, we note that, over X \ Y ,

BI OX
∼= OX [t], since I|X\Y ∼= OX\Y , and hence BlY X → X restricts over this subspace

to an isomorphism. On the other hand, the restriction i∗BI OX over Y is exactly the

associated graded i∗ grI OX — that is, the restriction (BlY X)|Y of the blowup over Y

itself, which is called the exceptional divisor, is exactly the projectivized normal cone

to Y in X.

Therefore, if we keep to our rough intuition of the normal cone as capturing “directions

perpendicular to Y in X” — and hence the projectivized normal cone as having points

corresponding to such “directions” — the operation of taking the blowup along Y can be

understand as replacing Y in X with its projectivized normal cone in such a way that

the complement X \Y is glued onto this space “according to the limiting directions along

which it originally approached Y in X”.

Of the many contexts in which blowups arise, particularly relevant to us is the notion

of resolution of singularities. In brief, this is the process of attempting to eliminate

the singular points of a space by repeatedly blowing up along closed subspaces — we will

return to the concept in Subsection 3.1.1.

2.4.4 Normalization and Singularities in Codimension 1

It is a well-known algebro-geometric fact that normalization (for which see, e.g., Sec-

tion 10.7 of [Vak23]) “resolves singularities in codimension 1” — that is, that the locus

of singular points of, say, a finite-type integral normal scheme over a perfect field is of

codimension at least 2. We will explain, briefly, how to prove this by means of the normal

cone.

To do so, we first need the following lemma, which relies on the standard notions of

the finiteness and birationality of morphisms — these can be found in, e.g., [Har77;

Vak23].

Lemma 2.4.8. Let k be a perfect field, X an integral finite-type k-scheme, and ν : X̃ → X

the normalization. For Y another integral finite-type k-scheme, suppose that we have a
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finite birational morphism ϕ : Y → X. Then ν factors uniquely through ϕ.

Proof To begin with, we note that the normalization is an affine morphism by definition

and ϕ is as well by virtue of being finite, we can prove this on the level of rings

by working locally on X. Thus, it suffices to prove that an inclusion R ↪→ S of

finitely-generated integral domains over k which makes S a finite R-module and

induces an isomorphism on fields of fractions gives rise to a unique map S ↪→ R̄

whose composition with the original yields the natural inclusion R ↪→ R̄, where R̄

denotes the integral closure of R in its field of fractions K.

This follows immediately by noting that we have a natural identification of S with

a subring of the field of fractions K of R and thus that R, S, and R̄ are all subrings

of K — since S is a finite R-module, each of its elements must be integral over R

and hence we have R ⊆ S ⊆ R̄ in K. The uniqueness follows by noting that maps

from subrings of K containing R are determined by their restriction to R.

Thus, at least in this context, X being a normal scheme is equivalent to there being no

nontrivial finite birational map to X. By the finiteness of integral closure in this context

(e.g., Theorem 10.7.3 of [Vak23]), the property in the preceding lemma also characterizes

the integral closure up to unique isomorphism for such schemes.

We are now prepared to verify that normalization resolves singularities in codimension

one:

Theorem 2.4.9. Let k be a perfect field and X an integral finite-type k-scheme which is,

moreover, normal. Then the singular locus of X has codimension at least 2.

Proof We will see by Proposition 3.1.3 that the singular locus is closed in X — let Y

denote the subscheme ofX given by taking this set with its reduced scheme structure.

By Theorem 2.2.14, the complement of Y is dense in X and so its dimension is

everywhere at most n− 1 for n := dimX.

Suppose toward a contradiction that Y has an irreducible component whose dimen-

sion achieves this upper bound. Then, again by Theorem 2.2.14, an open dense
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subset of this irreducible component is smooth — hence, since normalization com-

mutes with localization, we can suppose by restricting to an open subset of X that

Y is smooth of codimension 1. We now claim that, at least if we restrict to a further

dense open subset of X, the blowup map BlY X → X is a nontrivial finite birational

map to X — this will prove the claim by Lemma 2.4.8.

Birationality is immediate from our prior discussion of the blowup in Subsection 2.4.3

since Y has dense complement in X. To show finiteness, we note that the blowup

map is projective by construction and hence proper — thus, by Theorem 28.6.2 of

[Vak23] and the fact that the blowup is a finite-type map in this case, it is enough to

verify that its fibers are finite as sets. This is immediate away from Y . By the flatness

of the deformation to the normal cone (Proposition 2.3.3) and the fact that X is of

pure dimension n, we see that every component of CYX must be n-dimensional —

therefore, by restricting over a further open subset as necessary, we find that the

fibers of CYX → Y have pure dimension 1 and so, since the exceptional divisor is

the projectivized normal cone, the fibers of BlY X → X have pure dimension zero,

as desired.

It remains to show that the blowup map is nontrivial. Let y ∈ Y be a closed point

and, working in an affine patch around y, suppose that X is locally given by SpecR,

with I the ideal of R cutting out Y and m the ideal of R cutting out y. Then we

have natural maps TyY ↪→ TyX → NYX|y corresponding to the exact sequence

I/mI → m/m2 → m/(m2+I) → 0 of vector spaces over the residue field κ ∼= k in the

other direction. Since y is a singular point of X, we find that dimκ(m/m2) ≥ n+ 1;

on the other hand, since Y is smooth, dimκ(m/(m2 + I)) = n − 1. Thus it follows

that dimκ(I/mI) ≥ (n+ 1) − (n− 1) = 2 for each such y.

Now suppose toward a contradiction that the blowup map is trivial. Then the

exceptional divisor must simply be Y itself and so CYX is necessarily a line bundle

over Y embedded in NYX — here we can preclude the possibility of embedded

components at the zero section of CYX → Y by our prior observation that the
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normal cone has pure dimension n. In particular, CYX is a linear subspace of NYX

over Y — however, it is clear from the definitions that all of the generators of the

ideal cutting it out in this normal space have degree at least 2, so its linearity implies

that it is actually equal to NYX, which is therefore itself a line bundle. Since this

contradicts our prior result that the fibers of NYX are of dimension at least 2, the

result follows.
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Chapter 3

Singularities and Stratified Maps

In Chapter 2, we discussed ways of working with complex-analytic spaces by, essentially,

treating them like schemes — as we saw, most algebro-geometric constructions and results

admit some adaptation to the analytic setting, in no small part because of the local equiv-

alence of Proposition 2.1.2. However, this is not the only perspective we can take — many

algebro-geometric concepts, after all, arise as analogues of ideas from differential geometry,

and, since the underlying sets of complex-analytic spaces are locally given by vanishings

of collections of analytic functions in Cn, we can also attempt to apply techniques from

differential geometry more directly.

Here we will develop some of the machinery necessary to do so. Section 3.1 will

discuss in more detail the singularities of schemes and complex-analytic spaces before

introducing stratifications, tools which let us study even singular spaces in terms of

differential geometry. Section 3.2 will elaborate on the relative theory of stratifications by

providing additional conditions and results; Section 3.3 will conclude by laying out the

proof of a stratification theorem for families of holomorphic maps.

3.1 Stratifications and Whitney Conditions

As mentioned, we begin with a discussion of the singularities of spaces and maps, followed

by some basic definitions and results from stratification theory.
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3.1.1 Motivation: Smoothness and Singularities

Using differential geometry to study complex-analytic spaces will, of course, be vastly sim-

pler when the spaces are themselves manifolds with no additional non-reduced structure.

We have already seen two algebro-geometric definitions which purport to capture this no-

tion — the smoothness of Definition 2.2.13 and the regularity of Definition 2.3.4, based

on the notions of a tangent space given by Definitions 2.2.12 and 2.3.4 respectively. To

relate the two notions, we begin by noting that these constructions agree in the cases we

will be interested in:

Proposition 3.1.1. Let X be a scheme over a perfect field k or a complex-analytic space,

and x ∈ X a point which, in the algebraic case, we suppose to have residue field k. Then

there is a natural isomorphism TX|x ∼= TxX from the restriction of TX over x to the

Zariski tangent space.

The proof in the algebraic case can be found at [Sta23, Tag 0B28]; the complex-analytic

case can be verified explicitly using the local embeddings of X into Euclidean space and

standard properties of the cotangent sheaf (e.g., [Tei77]).

This leads us to the following theorem:

Theorem 3.1.2 (e.g., [Vak23]). Let k be a perfect field. Then every smooth k-scheme

is regular and every finite-type regular k-scheme is smooth. For complex-analytic spaces,

smoothness and regularity are equivalent, and both conditions are moreover equivalent to

being locally isomorphic to Cn for some n.

In the complex-analytic case, the equivalence of smoothness and regularity follows

from Proposition 3.1.1 by using Nakayama’s Lemma (e.g., Corollary 4.8 of [Eis04]) to

extend bases of TxX, although some care must be taken in dealing with the possibility of

lower-dimensional components; for final statement, see, e.g., Section 2.15 of [Fis76].

Hence we can focus on understanding smoothness and regularity by means of the tan-

gent bundle. As a first step in this direction, we have the following Jacobian Criterion

for checking the smoothness of maps:
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Proposition 3.1.3. Let ϕ : X → Y be a flat map set-theoretically of pure relative dimen-

sion d between finite-type schemes over a perfect field or complex-analytic spaces. Then

the locus of points in X where ϕ fails to be smooth is exactly the vanishing of the dth Fit-

ting ideal sheaf (see, e.g., Section 20.2 of [Eis04]) Fittd(ΩX/Y ) of the sheaf of Kähler

differentials.

Proof In these circumstances, smoothness is equivalent to ΩX/Y being locally free of rank

d. Hence, by Proposition 20.6 of [Eis04], the failure of smoothness at points of the

subspace cut out by Fittd(ΩX/Y ) is immediate. On the other hand, at points outside

this subspace, ΩX/Y is locally generated by d elements, which is to say that it locally

admits a surjection from a free sheaf of rank d. We consider such a point x ∈ X, fix

such a surjection, and argue that it must be an isomorphism.

To begin with, we note that, in the algebraic case, we can suppose without loss of

generality that x is a closed point by passing our hypotheses to a closed point of

a small enough open neighborhood of x. Now let y = ϕ(x) and note that, since

the formation of relative differential commutes with pullback along maps to the

codomain (e.g., [Eis04; Tei77]), the restriction of ΩX/Y to the fiber Xy of X over y

gives us simply ΩXy . By Proposition 3.1.1 and the fact that the dimension of the

Zariski tangent space of the fiber at any point is at least d by the dimensionality

hypothesis on ϕ, it is then immediate from Theorem 3.1.2 that Xy is smooth at x.

In the algebraic case, the result now follows by [Sta23, Tag 01V8], while in the

complex-analytic case it is immediate from the simplicity theorem of [Tei77].

Note that, if Y is the spectrum of the ground field in the algebraic case or a reduced

point in the complex-analytic case, we recover the usual Jacobian criterion (e.g., Theorem

16.19 of [Eis04]) using the standard conormal sequence (e.g., [Eis04; Tei77]).

This result motivates the following definition:

Definition 3.1.4 (cf. [Tei77]). Let ϕ : X → Y be a flat map set-theoretically of pure

relative dimension d between finite-type schemes over a perfect field or complex-
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analytic spaces. Then we denote the Fitting ideal sheaf Fittd(ΩX/Y ) by JX/Y (or

Jϕ) and call it the Jacobian ideal sheaf of X over Y (or of ϕ). The closed

subscheme cut out by this sheaf of ideals will be denoted by ΣX/Y (or Σϕ) and

called the singular or critical locus of X over Y (or of ϕ).

If Y is the spectrum of the ground field in the algebraic case or a reduced point

in the complex-analytic case, we drop Y from the notations and terminology and

prefer the word “singular” to “critical”.

Away from such singular points, the study of complex-analytic spaces and maps is

straightforwardly tractable through classical techniques from differential geometry, as de-

sired, and so it is the singularities which will occupy our attention going forward. One

popular approach to dealing with the existence of singular points for a scheme or complex-

analytic X is to seek a map from a non-singular space onto X which satisfies certain

reasonable hypotheses — this gives rise to the theory of resolution of singularities,

which has a long and storied history we will not explore in detail. For our purposes, it

will be enough to note that, for complex-analytic spaces, resolutions exist by the results

of Hironaka:

Theorem 3.1.5 (e.g., [W lo09]). Let X be a reduced complex-analytic space. Then there

exist a smooth complex-analytic space X̃ and a proper bimeromorphic map X̃ → X which

is an isomorphism over the smooth part of X.

In fact, stronger statements can be made about the structure of the desingularization,

but we omit them. For our purposes, it will be more fruitful to study smooth complex-

analytic spaces which can be embedded in X.

3.1.2 Definitions and First Results

We may seek to understand singular spaces by breaking them into smooth pieces, an ap-

proach which gives rise to the theory of stratifications. We will now provide an introduction

to this area of study, following the expositions of [Hir77; GM88; Dim92; Tro20].
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Definition 3.1.6. Let M be a smooth manifold and X ⊆ M a locally closed subset. A

stratification of X is a decomposition X =
⋃

iXi of X into disjoint locally closed

smooth submanifolds Xi, called strata, such that:

� Each point of X has a neighborhood which meets only finitely many strata.

� The closure in X of each stratum is a union of strata.

This latter requirement is called the frontier condition. Some authors also require

that each stratum be connected, while others do not — we will take the former view.

If M is a real-analytic manifold, we say that a stratification is real-analytic

if the closure of each stratum in A is so. The definition of a complex-analytic

stratification of a subset in a complex-analytic manifold M is analogous.

If X is a complex-analytic space, we say that a decomposition of the underlying

set is a stratification if it is so with respect to the local embeddings into Euclidean

space.

As discussed, we can now use the techniques of differential geometry to study singular

spaces by applying them stratum-wise. However, for many important applications the

definition of a stratification does not impose enough control on the relationships between

the strata — in particular, it is natural to want the space under consideration to “look the

same” from point to point within a stratum, but this is not guaranteed, as the following

example shows:

Example 3.1.7 (e.g., [Dim92]). Let W be the complex-analytic surface, called the Whit-

ney umbrella, in C3 cut out by the equation x2 − y2z = 0. Then, if we let L

denote the z-axis in C3, we can see that {W \ L,L} is a stratification of W . Then,

around points of L other than the origin, we can see by taking a local branch of

√
z that the triple of complex-analytic spaces (C3,W,L) is locally biholomorphic to

(C3, {xy = 0} × C, 0 × C) through a change of coordinates. At the origin, however,

this is not true even on the level of topological spaces, since, for example, the local



52

homology of W at the origin does not agree with that of a pair of complex planes

meeting in a line.

To rectify this issue, we introduce the following conditions, originally due to Whitney:

Definition 3.1.8 (e.g., [Hir77; GM88; Dim92; Tro20]). Let X be a locally closed subset of

a smooth manifold M and {Sα}α a stratification of X. Then, if Sα ⊂ Sβ are strata

and s a point of Sα, we say:

� (Sβ, Sα) satisfies Whitney’s condition (a), or is Whitney (a)-regular, at

s if, for each sequence xi of points in Sβ approaching s such that the limiting

tangent space T := limi→∞ TxiSβ exists, TsSα ⊂ T .

� (Sβ, Sα) satisfies Whitney’s condition (b), or is Whitney (b)-regular, at

s if, for each choice of sequences si in Sα and xi in Sβ approaching s such

that the limiting tangent space T := limi→∞ TxiSβ and limiting secant line

ℓ := limi→∞ sixi both exist, ℓ ⊆ T . Since the statement of this condition

no longer uses the smoothness of Sα, we will on occasion speak of Whitney

(b)-regularity in situations where the lower “stratum” is potentially singular.

We say that such a pair of adjacent strata satisfies either of these conditions if it

does so at each point of the lower-dimensional stratum, and that a stratification does

so if each pair of adjacent strata does. A Whitney stratification is defined to be

a stratification satisfying both conditions.

If X is a complex-analytic space, we again define these conditions on a stratifi-

cation locally using the local embeddings into Euclidean space.

Note that, in the complex-analytic case, we can check these conditions using holo-

morphic tangent spaces and complex lines. Moreover, implicit in our statement of the

condition (b) is that it does not depend on notion of a “line” — that is, on our choice of

local coordinates for M . This can be verified directly by comparing the local foliations

arising from different local coordinate systems.
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We have stated both conditions since (a)-regularity is easier to understand and will be

useful for our discussion of the Thom condition in Section 3.2, but it should be noted that

the conditions turn out to be redundant:

Proposition 3.1.9 (e.g., [Tro20]). For any individual pair of strata, Whitney’s condition

(b) implies Whitney’s condition (a).

As we will see in Subsection 3.1.3, Whitney’s conditions are enough to prevent failures

of local consistency of the sort arising in Example 3.1.7. Hence, if we are given a singular

space and wish to study it by way of differential geometry, using a Whitney stratification

to do so is a natural choice — it thus behooves us to establish that these stratifications

exist in general. The proof of this fact is in large part a consequence of the following

Generic Whitney Lemma, which we state in the complex-analytic case; the somewhat

subtler real-analytic version is unnecessary for our purposes and can be found in [Hir77].

Lemma 3.1.10 (e.g., [Hir77]). LetM be a complex-analytic manifold, B ⊆M a connected

complex-analytic submanifold, and A ⊆ B̄ − B a closed complex-analytic subspace of M .

Then there exists a closed complex-analytic subspace S ⊂ A, nowhere dense in A, such

that, for each p ∈ A, (B,A) is Whitney (b)-regular in a neighborhood of p if and only if

p ̸∈ S.

This is enough to guarantee the existence of complex-analytic Whitney stratifications

of complex-analytic subspaces of complex-analytic manifolds:

Theorem 3.1.11 (e.g., [Tei82; Tro20]). Let X be a complex-analytic space. Then X

admits a complex-analytic Whitney stratification.

We can also generalize the idea of a stratification to the setting of maps between

complex-analytic spaces.

Definition 3.1.12 (e.g., [Hir77; GM88]). Let ϕ : X → Y be a map of locally closed sub-

spaces of smooth manifolds arising from a restriction of a smooth function or a map

of complex-analytic spaces. Then a stratification of ϕ is given by stratifications
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of X and Y such that each stratum of X is mapped surjectively and submersively

onto some stratum of Y . We say that such a stratification is C-analytic or a Whit-

ney stratification if each of its constituent stratifications satisfies the respective

condition.

Note that, in particular, this makes the image of ϕ a union of strata in Y . Stratifications

of maps are useful for much the same reasons stratifications of spaces are; they decompose

a map into pieces such that each piece is, from the perspective of differential geometry,

“as nice as possible”. It behooves us, then, to establish that Whitney stratifications of

maps actually exist in good cases:

Theorem 3.1.13 (e.g., [Hir77; GM88]). Let ϕ : X → Y be a proper map of complex-

analytic spaces. Let P (S, s) and Q(S, s) be propositions defined for points s in complex-

analytic submanifolds S of X and Y respectively, such that the failure of P or Q on such

a submanifold occurs exactly on a locally closed complex-analytic subset of S which is

nowhere dense.

Then ϕ admits a Whitney stratification such that each stratum of X satisfies P at

every point and each stratum of Y satisfies Q at every point.

This is slightly more general than the version which is usually stated. Instead of the

conditions P and Q, it is typical to specify locally finite collections of complex-analytic

subsets which are required to be unions of strata — this corresponds to the propositions

“S is either contained in or disjoint from each of the chosen subsets in a neighborhood

of s” on X and Y . However, the proof in [Hir77] establishes the more general result

with little modification, and the added versatility will be useful to us. For a reasonably

comprehensive list of settings other than the complex-analytic one where the analogous

theorem holds, see Section I.1.7 of [GM88].

3.1.3 Thom’s First Isotopy Lemma and Local Triviality

As one indication of the usefulness of stratified maps, we have the following stratified

analogue of the Ehresmann Fibration Theorem, called Thom’s First Isotopy Lemma:
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Lemma 3.1.14 ([Mat70; Mat12]). Let X be a locally closed subset of a smooth manifold

M and f : M → N a map to another smooth manifold N whose restriction to X is

proper. Then, if X has a Whitney stratification such that the restriction of f to each

stratum is a smooth submersion, f is a stratified-homeomorphically locally trivial fibration

whose trivializations are moreover diffeomorphic along each stratum.

It is common to omit the statement about stratum-wise diffeomorphism entirely, and

state this lemma in terms of topological triviality alone. However, as Goresky and

MacPherson note in their statement of the lemma in Section I.1.5 of [GM88], the lo-

cal trivialization homeomorphisms are indeed smooth along each stratum — in fact, the

proof in Mather’s notes shows that the inverses are smooth as well, so they are even

stratum-wise diffeomorphisms. This is because the trivializations and their inverses arise

from the integration of controlled vector fields, which are by definition smooth along each

stratum and hence yield flows which are likewise stratum-wise smooth. Thus the proof

of Thom’s First Isotopy Lemma 3.1.14 gives a stronger result than is usually explicitly

stated, even in [Mat70; Mat12].

Thom’s First Isotopy Lemma 3.1.14 allows us to show that Whitney regularity pre-

cludes bad behavior of the sort we encountered in Example 3.1.7:

Theorem 3.1.15 (e.g., [Tro20]). Let W be a Whitney-stratified space, s ∈ W a point,

and S the stratum containing it. Then W is locally stratified-homeomorphic around s

to the product of S with a stratified space N in such a way that the homeomorphism is

diffeomorphic along each stratum. Moreover, N can be taken to be the open cone over a

stratified subset of a sphere.

That is, Whitney stratifications are locally trivial along each stratum, fulfilling our

desire for a stratification which “looks the same from point to point within a stratum”.

Care should be taken as to the nature of the trivializations, however — although they are

diffeomorphic along each stratum, Example 4.2.16 of [Tro20] shows that we cannot hope

for them to arise from diffeomorphisms of the ambient space in general.
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3.2 The Thom Condition and Relative Conormal Space

By Theorem 3.1.13, we know that Whitney stratifications exist at least for proper maps

of complex-analytic spaces. However, the Whitney conditions themselves are defined with

respect to the source and target spaces independently and, a priori, have little to do with

the map between them — indeed, even the requirement of being a stratumwise surjective

submersion does not tell us much about the relationship between the map’s behaviors

over differing strata of the codomain. Here we will introduce a more stringent relative

condition which gives finer control over the behavior of the map under consideration.

3.2.1 The Thom Condition

The following relative version of Whitney’s condition (a) imposes constraints of the sort

we want on the relationships between the various stratumwise fibers:

Definition 3.2.1. [Mat70; Mat12] Let X be a locally closed subset of a smooth manifold

M , {Sα}α a stratification of X, and f the restriction to X of a differentiable map

from M to another smooth manifold N . Then, if Sα ⊂ Sβ are strata and s a point of

Sα such that f |Sα and f |Sβ
have constant rank near s, we say that (Sβ, Sα) satisfies

the Thom (af) condition, or is Thom (af)-regular, at s if the following holds:

For each sequence of point xi in Sβ approaching S such that the limiting vertical

tangent space Tf := limi→∞ Tsi(Sβ ∩ f−1(f(si))) exists, Ts(Sα ∩ f−1(f(s))) ⊆ Tf .

We say that the pair (Sβ, Sα) satisfies this condition if it does so at every point of

Sα and f has constant rank everywhere on Sβ.

In the case of a map of complex-analytic spaces, we define these conditions lo-

cally as usual. By a Thom stratification of a map f we will mean a Whitney

stratification which moreover has the property that every pair of adjacent strata in

the domain is Thom (af )-regular.

This condition is strong enough to be quite useful in controlling the behavior of fibers

of stratified maps, as we will see in Chapter 4; however, it is also strong enough to no

longer be achievable in general, as the following example shows.
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Example 3.2.2 ([Hir77]). The natural projection of the blowup of a point in Cn does not

admit a Thom stratification for n ≥ 2, since the fibers away from the blown-up point

all have zero-dimensional tangent spaces and the fiber over the blown-up point is

not finite.

It is then natural to ask under what circumstances such a stratification can be found.

In [Hir77], Hironaka proves a rather technical result in this direction using relative Nash-

style modifications, which implies the existence of Thom stratifications for proper complex-

analytic maps to complex-analytic curves. This result will be of interest to us, but we

defer it to Subsection 3.2.3, where we will prove it using more modern machinery.

The Thom condition gives rise to a relative version of Thom’s First Isotopy Lemma

3.1.14, called Thom’s Second Isotopy Lemma — the details can be found in [Mat70;

Mat12].

3.2.2 The Relative Conormal Space

The Thom condition of Definition 3.2.1 is defined in terms of limits of sequences of tangent

spaces along smooth fibers of a function f , and we can just as well understand this dually

in terms of the limiting cotangent vectors vanishing on these tangent spaces. Hence we

can study the Thom condition in terms of the following object, as in, e.g., [LT88; BMM94;

GR19]:

Definition 3.2.3 (e.g., [GM18]). Let Φ : X → Y be a map between smooth complex-

analytic spaces which is a submersion on an open dense subset U of X. Then the

relative conormal space of Φ is the closed subset of the cotangent bundle T ∗X

given by

T ∗
ΦX := {(x, η) ∈ T ∗U | η(kerDΦ|x) = 0},

considered as a complex-analytic space via the reduced structure.

This is particularly easy to understand in the case where Y is 1-dimensional, say

Y = C; in this case T ∗
ΦX|U will be the bundle of cotangent lines spanned over each point
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by the gradient dΦ, and so each fiber of T ∗
ΦX will simply be the union of limiting gradient

lines of Φ at the point in question.

Observe that, since T ∗X is a vector bundle, and hence a complex-analytic cone, over

X and T ∗
ΦX|U is invariant under the scaling action in T ∗X|U , its closure will be invariant

under scaling as well and so T ∗
ΦX is a complex-analytic subcone of T ∗X. It is then natural

to seek to understand it in terms of the corresponding sheaf of algebras, which is given by

the following proposition:

Proposition 3.2.4 ([Hof]). Let Φ : X → Y be a map between smooth complex-analytic

spaces which is a submersion on an open dense subset U of X. Then the inclusion T ∗
ΦX ↪→

T ∗X corresponds, under the anti-equivalence between complex-analytic cones over X and

graded sheaves of OX-algebras given in Theorem 2.2.16, to the surjection from Sym(ΘX)

to the sheaf of OX-algebras which is the image of the map Sym(DΦ) : Sym(ΘX) →

Sym(Φ∗ΘY ) given by the differential of Φ.

Proof Let A be the sheaf of OX -algebras which is the image of the map Sym(DΦ) :

Sym(ΘX) → Sym(Φ∗ΘY ) given by the differential of Φ. Then, since we have a

natural surjective map Sym(ΘX) ↠ A, we can see that Specan(A) is defined as a

closed complex-analytic subspace of T ∗X ∼= Specan Sym(ΘX).

We claim first that the restriction of this subspace over U is exactly T ∗
ΦU = T ∗

ΦX|U .

To show this, we recall that a complex-analytic submersion of smooth manifolds

is given locally by a coordinate projection — hence, by shrinking to small enough

open V ⊆ U around each point, we obtain ΘV
∼= O⊕n

V and Φ∗ΘY |V ∼= O⊕m
V for n

and m the respective dimensions of X and Y , with DΦ being given by the projec-

tion onto the last m coordinates. As such, Sym(DΦ) is the already-surjective map

OV [ξ1, . . . , ξn] ↠ OV [ξ1, . . . , ξn]/(ξ1, . . . , ξn−m) ∼= OV [ξn−m+1, . . . , ξn] and so we can

see that the corresponding map of cones is the closed inclusion V ×Cm ↪→ V ×Cn ∼=

T ∗V of the sub-bundle which is zero locus of the first n−m coordinates of Cn. By

considering a dual basis for the tangent bundle, we find that this is exactly the locus

of covectors which vanish on the kernel of DΦ, and it is already closed, so it is equal
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to T ∗
ΦV as a subspace of T ∗V . The local equalities at each point combine to give the

claim over U .

Thus Specan(A) contains {(x, η) ∈ T ∗U | η(kerDΦ|x) = 0}; since it is closed, it

therefore contains T ∗
ΦX as well. It remains to show that this containment is an

equality on the level of complex-analytic spaces. Let I be the ideal sheaf cutting out

T ∗
ΦX in Specan(A); by the invariance of both spaces involved under scaling, we can

see that the support of I must meet the zero section of T ∗X if it is non-empty and

so it is enough to show equality locally at points of the zero section.

At each point of the zero section, however, the local rings of Specan Sym(ΘX) and

Specan Sym(Φ∗ΘX) are, if we set n := dimX and m := dimY , of the forms

C{x1, . . . , xn, ξ1, . . . , ξn} and C{x1, . . . , xn, ξ′1, . . . , ξ′m} respectively, and by Propo-

sition 2.1.6 the local ring of Specan(A) at this point will be the image of the map of

local rings ultimately induced by DΦ. Since C{x1, . . . , xn, ξ′1, . . . , ξ′m} is an integral

domain and so this is the quotient of C{x1, . . . , xn, ξ1, . . . , ξn} by a prime ideal, this

implies that Specan(A) is an irreducible complex-analytic space germ at the point in

question. Then, if we apply Theorem III.C.16 of [GR65] using the closed subspace

A := Specan(A) ∩ (T ∗X|X\U ), we find that {(x, η) ∈ T ∗U | η(kerDΦ|x) = 0} is

locally dense in Specan(A), so its closure T ∗
ΦX is locally equal to Specan(A) as sets

and hence, since both spaces are locally reduced, as spaces. The result follows.

As a consequence, we can see immediately that our definition is independent of the

chosen U .

This alternate description of the relative conormal space allows us to generalize Defini-

tion 3.2.3 beyond the situation where the spaces are smooth and the map is a submersion

on a dense open subspace, to any map of complex-analytic spaces or, indeed, of schemes

at least over a perfect field. However, since we will not actually have a use for relative

conormal spaces in this level of generality, we will not develop the idea any further here.

We now note that, since the relative cotangent space is a closed subspace of the cotan-

gent bundle, it comes endowed with some extra structure. In particular, per our discussion
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in Subsection 2.2.3, the cotangent bundle of a smooth space X arises as the analytic spec-

trum of the symmetric algebra generated by the sheaf of derivations ΘX , but there is also

a more informative way to endow ΘX with a multiplication: From the definitions of ΩX

and ΘX given in Definition 2.2.12, we can identify each derivation with the correspond-

ing C-endomorphism of OX and use the composition of endomorphisms. Then, treating

each element of OX itself as an endomorphism of OX by multiplication, we arrive at the

following definition:

Definition 3.2.5 (e.g., [HTT08]). Let X be a smooth complex-analytic space. Then we

define the sheaf of differential operators on X to be the sheaf DX of (noncom-

mutative) subalgebras of EndC(OX) generated by OX and ΘX .

This sheaf comes with a standard filtration by orders of differential operators; taking

the associated graded recovers the commutative algebra sheaf Sym(ΘX). Although we

will not pursue it in any detail, we note that considering differential equations on X by

way of quasicoherent sheaves of modules over the sheaf of differential operators gives rise

to the theory of D-modules — see, e.g., [HTT08].

Of particular interest to us is the observation that, since DX is a filtered sheaf of

noncommutative algebras whose associated graded is commutative, taking commutators

of representatives induces a Poisson bracket on the associated graded in addition to

the usual multiplication — details of the construction and definition can be found in

[Gab81]. The bracket operation in turn induces a map OT ∗X → ΘT ∗X which itself satisfies

the Leibniz rule and hence, by the universal property of ΩT ∗X , an OT ∗X -module map

ΩT ∗X → ΘT ∗X . This map is an isomorphism, so we can regard its inverse as defining an

element ω ∈ Ω2
T ∗X(T ∗X), which is a symplectic form and hence naturally endows T ∗X

with the structure of a symplectic manifold (e.g., Appendix E of [HTT08]).

In particular, we can now ask how subsets of the cotangent bundle, such as the relative

conormal space, relate to the symplectic structure. In the case of functions to C, we have

the following result:
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Theorem 3.2.6 (e.g., [GM18]). Let X be an open subset of Cn+1 and f : X → C a

non-constant holomorphic function. Then T ∗
fX|f−1(0) is set-theoretically a Lagrangian

subspace of the restricted cotangent bundle T ∗X|f−1(0).

The definition of a Lagrangian subspace may be found in, e.g., Appendix E of [HTT08]

— for our purposes, the exact details will not be important. The proof of this result is by

realizing T ∗
fX|f−1(0) as the characteristic variety of a sheaf of vanishing cycles on f−1(0);

this is discussed from the perverse-sheaf-theoretic perspective in [GM18], and the original

proof from the perspective of regular holonomic D-modules can be found in [BMM94].

Since the characteristic varieties of holonomic D-modules are Lagrangian by definition

(e.g., [HTT08]), this gives the theorem as stated here.

For our purposes, the importance of this theorem will stem from the following result.

The symplectic form ω on T ∗X can be shown to arise as the exterior derivative of the

canonical 1-form α ∈ ΩT ∗X(T ∗X) — see, e.g., Appendix E of [HTT08]. Then we have:

Proposition 3.2.7 (cf. Section E.3 of [HTT08]). Let X be a smooth complex-analytic

space and Λ ⊂ T ∗X a conic complex-analytic subset which is moreover Lagrangian. Then,

for any complex-analytic submanifold S ⊆ Λ, the pullback of the canonical 1-form α to S

is identically zero.

Proof By Corollary E.3.2 of [HTT08], the pullback of α to the regular locus of Λ is zero.

Then the result follows by Corollary 8.3.6(i) of [KS94] (applied to the holomorphic

1-form α by the usual identification of holomorphic forms with complexified real

forms of type (1, 0) — see, e.g., [Huy05]).

3.2.3 Thom Condition via the Relative Conormal Space

We can now restate the Thom condition of Definition 3.2.1 in terms of the relative conormal

space of Definition 3.2.3 in cases of interest to us. We first recall the following well-known

construction from differential geometry:

Definition 3.2.8. Let X be a smooth complex-analytic space and Y ⊆ X a smooth locally

closed complex analytic subspace, with i : Y ↪→ X the inclusion. Then we define
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the conormal bundle to Y in X as a closed subspace of the restricted cotangent

bundle T ∗X|Y by

T ∗
YX := {(y, η) ∈ T ∗X|Y | η(TyY ) = 0},

considered as a complex-analytic space with the reduced structure.

That is, this is the bundle of covectors of X at points of Y vanishing on the tangent

space of Y ; we can see that this is indeed a vector bundle by considering local coordinates

around each point of Y .

Then, under the right circumstances, we can reformulate the Thom condition as follows:

Proposition 3.2.9 (cf. [BMM94]). Let Φ : X → Y be a map between smooth complex-

analytic spaces which is a submersion on an open dense subset of X. Then, for any locally

closed complex-analytic submanifold S of the locus Σ where Φ drops rank such that Φ|S

has constant rank, the pair (X \Σ, S) satisfies the Thom (aΦ)-condition if and only if, for

each fiber M of Φ|S, T ∗
ΦX|M ⊆ T ∗

MX set-theoretically.

The stronger version of this statement implicit in the definition of the Thom condition

given in [BMM94] uses a slightly more general definition of the relative conormal space

than that of Definition 3.2.3, so for the sake of simplicity we will not concern ourselves

with it. The proposition as stated follows from the definitions by observing that the set-

theoretic condition T ∗
ΦX|M ⊆ T ∗

MX is equivalent to the requirement that the covectors

cutting out the limiting tangent spaces to fibers of Φ|X\Σ all vanish on TM .

We can now verify that Thom stratifications exist in nice enough circumstances; first

we require the following simple lemma.

Lemma 3.2.10. Let f : X → S be a nowhere-constant map of smooth complex-analytic

spaces with S a curve. Then f is smooth of relative dimension dimX−1 and the Jacobian

ideal Jf of Definition 3.1.4 is locally generated by the partial derivatives of f .

Proof Since X is smooth, it is locally isomorphic as complex-analytic spaces to Euclidean

space by Theorem 3.1.2, so it suffices to prove the statements locally on Cn+1. At



63

each point, the local ring can then be taken to be the convergent power series ring

C{x0, . . . , xn}, which is in particular an integral domain; it then follows by the

Principal Ideal Theorem (e.g., Theorem 12.3.3 of [Vak23]) and the fact that f is

taken to be nowhere constant that the local fiber dimension is n. By Theorem 2.4.4,

it then follows that f is flat of relative dimension n.

To show that the Jacobian ideal is as claimed, we take the relative cotangent

sequence f∗ΩS → ΩX → Ωf → 0, for which see, e.g., [Tei77; Eis04]. By the

smoothness of X and S, this realizes Ωf as the cokernel of a map of locally free

sheaves — hence, by the definition of the nth Fitting ideal sheaf (e.g., [Tei77; Eis04]),

Jf := Fittn(Ωf ) is locally given by the 1 × 1 minors of the corresponding matrix.

This proves the result.

Now, using the method of proof of, e.g., Proposition 8.3.10 of [KS94], we have:

Theorem 3.2.11 (cf. [Hir77; BMM94]). Let f : X → S be a nowhere-constant map of

smooth complex-analytic spaces with S a curve such that f(Σf ) is a discrete set. Then f

admits a complex-analytic Thom stratification.

Proof We stratify S such that the strata are the points of f(Σf ) and the complement Samb

of the union of these points; it is not difficult to see that this stratification satisfies

the Whitney conditions. Set Xamb := f−1(Samb) and, for each point s ∈ f(Σf ),

consider the fiber Xs := f−1(s) over s.

By Theorem 3.1.13, the proper map PT ∗
fX|Xs → Xs admits a complex-analytic

Whitney stratification. We claim that, for each stratum M of Xs, T
∗
fX|M ⊆ T ∗

MX

set-theoretically. To show this, we note first that it is enough to verify the assertion

away from the zero section in T ∗X|M , since the complements of the zero section in

T ∗
fX|M and T ∗

MX are dense. Since T ∗
fX|M is naturally a C∗-bundle over PT ∗

fX|M ,

we can see for each stratum of PT ∗
fX|Xs over M that its inverse image N in T ∗

fX|M

is a complex-analytic submanifold of T ∗
fX|Xs ; Theorem 3.2.6 (applied locally) and

Proposition 3.2.7 then imply that the pullback of the canonical 1-form to N is
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identically zero.

Around each point of M , let x1, . . . , xn be local coordinates for X, such that M is

given by the vanishing of the coordinates x1, . . . , xk. Then we can see that T ∗X is

locally a trivial vector bundle with coordinates ξ1, . . . , ξn, and the canonical 1-form

is locally given by α = ξ1dx1+ . . .+ξndxn (e.g., Appendix E of [HTT08]). Since N is

mapped into M by the projection, we can see that in our local patch the coordinates

x1, . . . , xk vanish on N and so dx1, . . . , dxk do as well. Moreover, since N is mapped

surjectively and submersively to M , the coordinates xk+1, . . . , xn of M are linearly

independent coordinates on N and thus their differentials dxk+1, . . . , dxn are linearly

independent as well. Hence 0 = α|M = ξk+1dxk+1 + . . .+ ξndxn implies that ξi = 0

for all k < i ≤ n. Since xi for k < i ≤ n are the coordinates of M , however, the

vanishing of these ξi exactly defines T ∗
MX and so N ⊆ T ∗

MX.

Applying this result across all strata of the projectivized relative conormal space

verifies the claim. We can then take our Whitney stratification of X to be the one

whose strata are Xamb and the chosen strata of Xs for each such s; this indeed

gives a Whitney stratification for f since the Whitney conditions with respect to the

ambient stratum are trivial and f takes strata of X surjectively and submersively to

those of S by construction. Moreover, the Thom (af ) condition for strata contained

in a single fiber Xs reduces to the Whitney (a) condition, and all strata satisfy the

Thom condition with respect to the ambient stratum by Proposition 3.2.9.

Note that the requirement that X be smooth can be circumvented — compare the

results of [Hir77] and [BMM94].

3.3 Thom Condition via Flatness

We now turn to the situation which will concern us in Chapter 4 — a holomorphically-

parameterized family of holomorphic functions on a smooth complex-analytic space. Specif-

ically, we will build up to the proof of Theorem 3.3.3, which gives an algebro-geometric
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condition under which we can produce a stratification partially satisfying the Thom con-

dition of Definition 3.2.1 for such a family.

3.3.1 Specialization of the Relative Conormal Space

As discussed in Subsection 3.2.3, the Thom condition is intimately related to the relative

conormal space of Definition 3.2.3. We then want to know how relative conormal spaces

behaves in families — in particular, how the relative conormal space of a function defining

a family is affected by specialization to a particular choice of parameters. (For results

on the specialization of the relative conormal space in various other settings, see [HMS84;

LT88; HM96; GM18].)

Before stating our own result in this vein, we need the following general lemma, which

says essentially that the behavior under pullback of a map between flat objects is controlled

by that of its cokernel:

Lemma 3.3.1 ([Hof]). Let R be a ring, 0 → A3 → A2 → A1 → A0 → 0 an exact sequence

of R-modules such that A1 and A2 are flat over R, and B another R-module. Then the

following hold:

� H2(A• ⊗R B) ∼= TorR1 (A0, B).

� H3(A• ⊗R B) ∼= TorR2 (A0, B).

� TorRi (A3, B) ∼= Tori+2(A0, B) for all integers i ≥ 1.

Proof Let · · · → F2 → F1 → F0 → B → 0 be a flat resolution of B. We can then form a

first-quadrant double complex A•⊗RF• whose (i, j)th entry is Ai⊗Fj using the usual

sign trick (see, e.g., Section 2.7 of [Wei94]) and consider both of the corresponding

spectral sequences (e.g., Section 5.6 of [Wei94]). By the flatness of the Fj and the

exactness of A•, the rows of this double complex are exact, so the convergence of

the spectral sequence given by the filtration by rows tells us that the homology of

the associated total complex vanishes.
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On the other hand, if we take the spectral sequence given by the filtration by columns,

we find that the E1 page has the following form:

...
...

...
...

...
...

0 Tor3(A0, B) 0 0 Tor3(A3, B) 0

0 Tor2(A0, B) 0 0 Tor2(A3, B) 0

0 Tor1(A0, B) 0 0 Tor1(A3, B) 0

0 Tor0(A0, B) Tor0(A1, B) Tor0(A2, B) Tor0(A3, B) 0

Hence we can see immediately that the E2 page is as follows:

...
...

...
...

...
...

0 Tor3(A0, B) 0 0 Tor3(A3, B) 0

0 Tor2(A0, B) 0 0 Tor2(A3, B) 0

0 Tor1(A0, B) 0 0 Tor1(A3, B) 0

0 H0(A• ⊗R B) H1(A• ⊗R B) H2(A• ⊗R B) H3(A• ⊗R B) 0

ϕ

The E3 page:
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...
...

...
...

...
...

0 Tor3(A0, B) 0 0 Tor3(A3, B) 0

0 Tor2(A0, B) 0 0 Tor2(A3, B) 0

0 cokerϕ 0 0 Tor1(A3, B) 0

0 H0(A• ⊗R B) H1(A• ⊗R B) kerϕ H3(A• ⊗R B) 0

Since the maps on all higher-indexed pages must be zero, the convergence of the

spectral sequence to the homology of the associated total complex, which we have

already shown is zero, gives us the desired isomorphisms.

We have stated this lemma in the language of rings and modules for simplicity, but it

will not be difficult to use it to obtain results on the level of spaces and sheaves.

We can now apply this to the question of the specialization of the relative conormal

space. Observe that, for a smooth map, this space is a vector bundle over the domain —

that is, the only interesting local behavior arises at the criticalities of the map, and hence

we should expect such behavior to be controlled in some sense by the Jacobian ideal sheaf

of Definition 3.1.4. Indeed, we have:

Lemma 3.3.2 ([Hof]). Let X and U be smooth complex-analytic spaces. Let π : X×U →

U be the projection and suppose we have a map F : X×U → C of complex-analytic spaces

such that F is nowhere constant on each fiber of π. Suppose that the closed embedding

ΣF×π ↪→ X × U is flat over U in the sense of Definition 2.3.14.

Then, for each point u ∈ U , we have T ∗
F×π(X×U)|π−1(u) = T ∗

fu
X×π−1(u)π

∗(T ∗U)|π−1(u)

as complex-analytic subspaces of the restricted cotangent bundle T ∗(X × U)|π−1(u) =

T ∗X ×π−1(u) π
∗(T ∗U)|π−1(u), where fu := F |π−1(u).

Proof Let i : X ∼= π−1(u) ↪→ X × U be the inclusion. Then the restricted cotangent
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bundle T ∗(X×U)|π−1(u) on X is the vector bundle corresponding under the Fischer-

Prill Theorem 2.2.5 to the coherent sheaf i∗ΘX×U
∼= ΘX ⊕ i∗π∗ΘU .

Likewise, by Proposition 3.2.4, the restricted relative conormal space T ∗
F×π(X ×

U)|π−1(u) corresponds to the pullback along i of the image of the map Sym(D(F ×

π)) : Sym(ΘX×U ) → Sym((F × π)∗ΘC×U ) of graded sheaves of algebras on X × U ;

letting ρ : X × U → X be the projection and noting that ΘX×U
∼= ρ∗ΘX ⊕

π∗ΘU and (F × π)∗ΘC×U
∼= F ∗ΘC ⊕ π∗ΘU , we find that this can be written as

a map Sym(ρ∗ΘX) ⊗ Sym(π∗ΘU ) → Sym(F ∗ΘC) ⊗ Sym(π∗ΘU ). Hence we can

study Sym(D(F × π)) in terms of the maps Sym(D(F × π)|ρ∗ΘX
) : Sym(ρ∗ΘX) →

Sym(F ∗ΘC)⊗Sym(π∗ΘU ) and Sym(D(F ×π)|π∗ΘU
) : Sym(π∗ΘU ) → Sym(F ∗ΘC)⊗

Sym(π∗ΘU ) on the two factors of the tensor product. Observe that the endomor-

phism of Sym(F ∗ΘC) ⊗ Sym(π∗ΘU ) induced by the natural map Sym(F ∗ΘC) →

Sym(F ∗ΘC)⊗Sym(π∗ΘU ) and Sym(D(F×π)|π∗ΘU
) is, in fact, an automorphism with

inverse given by pre- and post-composing the same map with idSym(F ∗ΘC)⊗(−1),

since Sym(D(F × π)|π∗ΘU
) is induced by the direct product DF |π∗ΘU

×Dπ|π∗ΘU
=

DF |π∗ΘU
× idπ∗ΘU

of maps of coherent sheaves; denote this inverse by ψ. Since π is

constant with respect to the coordinates of X, we can see moreover that Sym(D(F ×

π)|ρ∗ΘX
) is induced by tensoring the differential Sym(DF |ρ∗ΘX

) : Sym(ρ∗ΘX) →

Sym(F ∗ΘC) over OX×U with Sym(π∗ΘU ).

As such, we find that ψ ◦ Sym(D(F × π)|ρ∗ΘX
) = Sym(D(F × π)|ρ∗ΘX

) and ψ ◦

Sym(D(F × π)|π∗ΘU
) is the natural map Sym(π∗ΘU ) → Sym(F ∗ΘC)⊗ Sym(π∗ΘU ).

Therefore, by our observation on Sym(D(F × π)|ρ∗ΘX
), ψ ◦ Sym(D(F × π)) is the

map given by Sym(DF |ρ∗ΘX
)⊗idSym(π∗ΘU ). Since ψ is an automorphism, this means

that in particular that these maps have the same kernel and hence their images

are the same as quotients of Sym(ΘX×U ). Therefore T ∗
F×π(X × U)|π−1(u) in fact

corresponds to the pullback along i of the image of Sym(DF |ρ∗ΘX
) ⊗ idSym(π∗ΘU ) :

Sym(ΘX×U ) → Sym((F × π)∗ΘC×U ). By the flatness of the locally free sheaf π∗ΘU

and the consequent flatness of Sym(π∗ΘU ), this sheaf is given by tensoring the image
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of the map Sym(DF |ρ∗ΘX
) : Sym(ρ∗ΘX) → Sym(F ∗ΘC) itself by Sym(π∗ΘU ) and

then pulling back along i.

On the other hand, i∗ Sym(DF |ρ∗ΘX
) = Sym(Dfu), so the image of this map corre-

sponds to the complex-analytic cone T ∗
fu
X in T ∗X. Since i∗ ◦ (−⊗ Sym(π∗ΘU )) =

(−⊗Sym(i∗π∗ΘU ))◦ i∗, it therefore suffices to show that pullback along i commutes

with taking the image of Sym(DF |ρ∗ΘX
). That is, if we write ϕ := Sym(DF |ρ∗ΘX

),

we need only verify that

0 → i∗ kerϕ→ i∗ Sym(ρ∗ΘX)
i∗ϕ−−→ i∗ Sym(F ∗ΘC) → i∗ cokerϕ→ 0

remains exact. Since exactness can be checked on stalks, i∗ becomes a tensor product

by the appropriate quotient of π−1OU on stalks, and the stalks of Sym(ρ∗ΘX) and

Sym(F ∗ΘC) are both flat over those of OX×U and hence those of OU , we can apply

Lemma 3.3.1 to further reduce the problem to showing that the stalks of cokerϕ are

flat over those of OU .

Hence, letting x ∈ X be any point and setting p := (x, u), we take explicit lo-

cal trivializations of the vector bundles (ρ∗ΘX)p and (F ∗ΘC)p, letting their co-

ordinates be ξ0, . . . , ξn (for x0, . . . , xn local coordinates of X) and τ respectively.

Then we must show the flatness over OU,u of the cokernel of the homogeneous

map OX×U,p[ξ0, . . . , ξn] → OX×U,p[τ ] induced by DF — this is given by ξi 7→
∂F
∂xi
τ . As such, the cokernel is a graded module whose degree-d part is given by

(OX×U,p/(
∂F
∂x0

, . . . , ∂F
∂xn

)d)τd.

Now note that, since fu is non-constant on X near x by hypothesis, its fiber over

fu(x), and hence the fiber of F × π over (fu(x), u), must have dimension n (for

dimX =: n+ 1). Hence, by the smoothness of the complex-analytic spaces involved

and Theorem 2.4.4, F × π is flat at p of relative dimension n, justifying our use of

the critical locus in the statement of the result. Indeed, as in the proof of Lemma

3.2.10, JF×π is the nth Fitting ideal sheaf of ΩF×π; by noting that (F ×π)∗ΩC×U →



70

ΩX×U → ΩF×π → 0 locally realizes ΩF×π as the cokernel of a map of free sheaves

and locally considering the rank-(dimU + 1) minors of the corresponding Jacobian

matrix, we can see that (JF×π)p = ( ∂F
∂x0

, . . . , ∂F
∂xn

). As such, our cokernel above is

isomorphic to the direct sum of the stalks at p of the structure sheaves of all of

the infinitesimal neighborhoods of ΣF×π — these are flat over OU,u by hypothesis,

proving the result.

(As a side consequence of our methods in this proof, we note that the relative conor-

mal space in this case is exactly the analytic spectrum of the blowup algebra sheaf

BJF×π
OX×U , and so the projectivized relative conormal space is simply the blowup of

X × U at ΣF×π.)

Thus, for such a parameterized family, the flatness of the normal cone to the critical

locus ΣF×π is enough to guarantee that the relative conormal space behaves predictably

under specialization.

3.3.2 A Stratification Theorem

We are now prepared to prove the promised stratification theorem for a family of holomor-

phic functions by imposing flatness conditions on the embedding of the relative critical

locus in the family; compare this to the remarks of Hironaka on the relationship between

the Thom condition and flatness in Section 5 of [Hir77].

Theorem 3.3.3 ([Hof]). Let X and U be smooth complex-analytic spaces. Let π : X×U →

U be the projection and suppose we have a map F : X×U → C of complex-analytic spaces

such that F is nowhere constant on each fiber of π.

Then there exists a complex-analytic Whitney stratification of X × U such that the

ambient stratum is (X × U) \ ΣF×π, the non-flat locus of the embedding ΣF×π ↪→ X × U

(in the sense of Definition 2.3.14) over U is a closed union of strata, F × π has constant

rank on each stratum, and the Thom (aF×π) condition with respect to the ambient stratum

is satisfied on any stratum not contained in this non-flat locus.



71

Proof As in the proof of Lemma 3.3.2, working in local coordinates demonstrates that

F × π is flat and ΣF×π is precisely the locus where the map drops rank.

Let L be the non-flat locus of the embedding ΣF×π ↪→ X × U over U in ΣF×π. We

begin by arguing that L is a closed complex-analytic set. By definition, L is exactly

the non-flat locus of the normal cone C := CΣF×π
(X × U) over U in ΣF×π; consider

the maps C
ρ−→ ΣF×π

π|ΣF×π−−−−−→ U and let L′ be the non-flat locus of C over U in C, so

that L = ρ(L′). Now, since the natural quotient map q makes the complement of the

zero section in C a C∗-bundle over PC (because the corresponding sheaf of algebras

is generated in degree 1) and hence faithfully flat over it as well, we can see that L′

is a union of orbits of the natural C∗-action on C. L′ is a closed complex-analytic

subset of C by Theorem IV.9 of [Fri67], so this implies that in fact L′ is a union

of orbits of the natural C-action — that is, any failure of flatness at a point away

from the zero section will induce a failure of flatness at the corresponding point of

the zero section. Hence L is exactly the intersection of L′ with the zero section in

C, proving the claim.

Now let R := T ∗
F×π(X ×U) be the relative conormal space and consider the natural

projection PR → X × U . This map is proper and hence, by applying Theorem

3.1.13 with the condition Q(S, s) = “locally around s, F × π has constant rank on

S and S is either contained in or disjoint from each of L and ΣF×π”, we obtain

a complex-analytic Whitney stratification of it such that F × π has constant rank

on every stratum in the induced stratification of X × U and L is a union of strata.

Moreover, ΣF×π is a union of strata; we claim that, by merging all other strata and

their inverse image strata, we can take the ambient stratum to be (X × U) \ ΣF×π.

We verify that this modification does not alter any of our claims. F ×π has constant

rank on (X × U) \ ΣF×π by definition, so this hypothesis is preserved. Moreover,

the Whitney conditions with respect to an ambient stratum are trivial, so merging

lower strata into the ambient stratum cannot affect them. Likewise, the closure of

each stratum of X × U remains a complex-analytic subspace, so the result is still a
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complex-analytic stratification. Since L ⊆ ΣF×π, L remains a union of strata. Note

that PR is an isomorphism over (X × U) \ ΣF×π, since the relative conormal space

R is a line bundle on this locus — therefore merging the strata in the source does

not cause any failure of the restricted projection to be a surjective submersion, and

the resulting partition of PR remains a complex-analytic Whitney stratification by

the same reasoning used on X × U .

This being done, we show that the resulting Whitney stratification of X ×U fulfills

the claims of the theorem statement. It remains to verify the statement about the

Thom condition; to this end, consider a stratum S of ΣF×π \ L.

To begin with, we consider π|S . Since S ⊆ ΣF×π and π has constant rank on X×U ,

we can see that F × π is constant with respect to X everywhere on S; that is,

(F × π)|S factors through π. In particular, since F × π has constant rank on S, π

does as well, and so the fibers of π|S are manifolds. Therefore let u ∈ U and set

M := π−1(u) ∩ S; by Proposition 3.2.9, it is enough to verify for each such u that

R|M ⊆ T ∗
M (X × U) set-theoretically.

Since M is by definition contained in a single fiber of π, which we will denote by

π−1(u) or X, we find that T ∗
M (X × U) = T ∗

MX ×M π∗(T ∗U)|M as a subspace of

T ∗(X×U)|M = T ∗X|M×Mπ
∗(T ∗U)|M ; that is, all covectors arising by pullback from

U vanish on TM . Likewise, taking the function f := F |π−1(u) on X and noting that

M is disjoint from L, we find by Lemma 3.3.2 that R|M = T ∗
fX|M ×M π∗(T ∗U)|M .

Observe that, by our prior reasoning from the containment of S in ΣF×π, M ⊆ Σf ;

that is, f |M is constant. Observe moreover that, since the strata of PR are mapped

to the corresponding strata of X × U surjectively and submersively, the constant-

rank requirement implies restriction over u likewise yields a Whitney stratification of

PR|u → X. The proof now proceeds more or less in the manner of that of Theorem

3.2.11 — the only subtlety is that, instead of smooth locally-closed subsets of a

conic Lagrangian subset of T ∗X, we now work with smooth locally-closed subsets of

the product of such a subset with CdimU . However, taking the “canonical 1-form”
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only with respect to the coordinates of X, we find that the appropriate analogue to

Proposition 3.2.7 holds by essentially the same proof. The result follows.
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Chapter 4

The Milnor Fibration

In Chapters 2 and 3 we have seen various techniques for dealing with spaces and maps

defined locally by holomorphic functions. We now apply these to our titular object of

study: the Milnor fibration of a holomorphic function at a critical point. In brief, this

construction captures the local behavior of the function’s smooth fibers near the point

in question — its study serves as an analogue of Morse theory or Picard-Lefschetz

theory for arbitrary critical points.

The Milnor fibration has been worked on extensively by a variety of authors since its

introduction in [Mil68]. Despite this, there is no known general method of computing

even the homology of its fiber for a given holomorphic function, even if we restrict to

fairly well-behaved classes of functions such as homogeneous polynomials. In [Hof], the

author of this thesis proposes that the key to this problem should arise from the study of

the function’s critical locus as a complex-analytic space with the potentially non-reduced

structure given by Definition 3.1.4 and proves a relative version of this principle for families

of holomorphic functions — here we provide relevant background on the study of the

Milnor fibration, review the proof of this result, and summarize some of its consequences.

Specifically, in Section 4.1, we give the definition of the Milnor fibration, establish its

existence, and mention the basic results motivating the complex-analytic-space-theoretic

viewpoint. Section 4.2 provides background information and machinery for the behavior
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of the Milnor fibration in families, and in Section 4.3 we conclude by discussing the main

theorem (Theorem 4.3.1) and some examples of its use.

As mentioned, the study of the Milnor fibration is a broad subject, and the results we

review will be only a small selection — for more comprehensive introductions, see [Dim92;

Max19; Sea19; LNS20]. For the relationship of the Milnor fibration with the machinery

of perverse sheaves (and hence D-modules) and the nearby and vanishing cycles

functors in particular, see [Max19; Max20].

4.1 Definitions and First Results

Let X be a smooth complex-analytic space and f : X → C a nowhere-constant holomor-

phic function. Then, as mentioned in Chapter 1, the local behavior of f locally around

points away from Σf (which is well-defined by Lemma 3.2.10) is necessarily given by

a trivial fibration of the sort depicted in Figure 1.1, which we reproduce here for easy

reference:

1

Figure 4.1: A reproduction of the local coordinate projection — e.g., f(x, y) = y —
depicted in Figure 1.1.

On the other hand, at points of Σf , the behavior of f is no longer quite so trivial.

The fiber of f at such a point is singular; by working locally and discarding it, we obtain

a fiber bundle, no longer trivial, which will be called the Milnor fibration. A simple
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example is depicted in Figure 1.2, which we again reproduce for easy reference:

1

Figure 4.2: A reproduction of Figure 1.2, depicting local fibers around a critical point —
e.g., the origin for f(x, y) = xy.

We now proceed as follows. Subsection 4.1.1 will introduce the definitions and results

necessary to make the preceding discussion precise, while Subsection 4.1.2 will introduce

globally-defined analogues to these in the special case of a homogeneous polynomial. Fi-

nally, Subsection 4.1.3 will detail some initial facts about the relationship between this

fibration and the local structure of Σf which will eventually motivate our main results in

Section 4.3.

4.1.1 The Local Milnor Fibration

Consider a germ of a holomorphic function f : (Cn+1, 0) → (C, 0) — that is, an equiv-

alence class of holomorphic functions f : U → C on open sets 0 ∈ U ⊆ Cn+1 satisfying

f(0) = 0 under the equivalence relation given by agreement on some such open subset. We

will outline the construction of the Milnor fibration of f at the origin, following the proof

of [Lê77]. We note first that the image of the critical locus of f is locally well-behaved:

Proposition 4.1.1. Let f : (Cn+1, 0) → (C, 0) be a non-constant holomorphic function

germ. Then, if we take a representative of f on a sufficiently small open neighborhood of

0 in Cn+1, we have f(Σf ) ⊆ 0 in C.
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Proof Let ε > 0 be so small that f is defined in a neighborhood of B̄ε, for Bε ⊂ Cn+1

the open ball at the origin, and take the representative of f on such a neighborhood.

Suppose toward a contradiction that we have a sequence xi of points in Bε ∩ Σf ∩

f−1(C∗), where C∗ := C\0; since B̄ε∩Σf is compact, we can pass to a subsequence to

suppose that xi converges to some point x ∈ B̄ε∩Σf . Then, by the Curve Selection

Lemma, proved by Milnor in the algebraic case in [Mil68] and more generally by

Hironaka in [Hir73], there is a real-analytic curve ρ : [0, r) → B̄ε ∩ Σf such that

ρ(0) = x and ρ((0, r)) ⊆ Bε ∩ Σf ∩ f−1(C∗). Since f is necessarily constant along

any curve contained in Σf by Lemma 3.2.10, this yields the desired contradiction.

Hence 0, if it is contained in f(Σf ∩Bε) at all, is an isolated point of this set, and so

the result holds for any neighborhood contained in the intersection of Bε with the

inverse image under f of a sufficiently small neighborhood of the origin in C.

In light of this fact, the following result is now immediate from Theorem 3.2.11:

Proposition 4.1.2. Let f : (Cn+1, 0) → (C, 0) be a non-constant holomorphic function

germ. Then the representative of f on some sufficiently small open neighborhood of 0 ∈

Cn+1 admits a Thom stratification.

Our proof of existence for the Milnor fibration will be by using this Thom stratification

to control the smooth fibers of f . This will rely on the following well-known lemma:

Lemma 4.1.3. Consider an open neighborhood U of the origin in Cn+1 and fix a Whitney

stratification of U . Then, for every ε > 0 in a sufficiently small neighborhood the origin

in R≥0, the sphere Sε of radius ε centered at the origin in Cn+1 is transverse to all of the

strata of our stratification.

Proof Consider a stratum M not containing the origin and a point x ∈ M . Then, if we

set ε := |x|, M fails to be transverse to Sε at M if and only if TxM ⊆ TxSε; using

the standard Riemannian metric on Cn+1 ∼= R2n+2, we can see that this will hold if

and only if TxM is orthogonal to the line ℓ from the origin to x. As such, if there
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were points of M arbitrarily close to the origin where this transversality failed, the

Whitney condition (b) would not hold for M and the stratum containing the origin.

Then, since stratifications are by definition locally finite and the eventual transver-

sality is immediate for the stratum containing the origin, the result follows.

We can now prove that the local smooth fibers of f over values near 0 fit together into

a fiber bundle:

Theorem 4.1.4 ([Mil68; Lê77]). Let f : (Cn+1, 0) → (C, 0) be a non-constant holomorphic

function germ. Then, for each ε > 0 in a sufficiently small open neighborhood of the origin

in R≥0, we can choose small enough δ > 0 such that f is defined on Bε and the restriction

f : Bε ∩ f−1(D∗
δ ) → D∗

δ

is a diffeomorphically locally trivial fibration, where D∗
δ is the punctured open disk of radius

δ at the origin in C. Moreover, this is independent of the chosen δ and ε, and indeed of

the chosen local coordinates.

Proof By Proposition 4.1.2 and Lemma 4.1.3, there exists an open neighborhood of the

origin in R≥0 so small that, for any ε > 0 in it, f is defined and admits a Thom

stratification on some neighborhood of B̄ε and Sε is transverse to all strata of this

stratification.

Considering such an ε, we note for each point x ∈ Sε ∩ f−1(0) that, by the Thom

condition and the openness of transversality, there is open neighborhood Ux of x

in the domain of our representative of f such that the fibers of f at points of

Ux ∩ f−1(C∗) are transverse to the spheres centered at the origin through those

points. Therefore, we cannot have a sequence of points xi of Sε \ Σf such that the

fibers of f fail to be transverse to Sε at the xi and f(xi) → 0; if such a sequence

were to exist, it would have a subsequence converging to some x ∈ Sε ∩ f−1(0) by

the compactness of Sε, which would then be eventually inside Ux, a contradiction.
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Thus we can pick δ > 0 so small that the fibers of f |D∗
δ̂

are transverse to Sε and

consider the restriction of f to B̄ε∩f−1(D∗
δ ). This map is proper by the compactness

of B̄ε and, if we stratify its domain by the subsets Bε ∩ f−1(D∗
δ ) and Sε ∩ f−1(D∗

δ ),

we can see that its restriction to each stratum is a smooth submersion, in the former

case because the domain is disjoint from Σf and in the latter case exactly by the

requirement that the fibers of f be transverse to Sε. Since the Whitney conditions are

trivial for the chosen strata, Thom’s First Isotopy Lemma 3.1.14 then implies that

this map is a homeomorphically trivial fibration whose trivializations are moreover

diffeomorphic along each stratum. This proves the main claim.

The claimed independence of δ for a fixed ε follows by noting (e.g., Lemma 6.2.16 of

[LNS20]) that such a locally trivial fibration over D∗
δ depends only on its restriction

over any circle of radius less than δ centered at the origin. To prove independence of

ε, we can modify our approach above to replace the compact set Sε by the compact

set B̄ε′′ \ Bε′ for 0 < ε′ < ε < ε′′ (with ε′′ still sufficiently small) to choose a δ > 0

such that the fibers of f |D∗
δ

are transverse to the spheres of radii between ε′ and ε′′;

we can then apply Thom’s First Isotopy Lemma to the restriction of f × id(ε′,ε′′) to

the intersection of f−1(D∗
δ ) × (ε′, ε′′) with the subspace of B̄ε′′ × (ε′, ε′′) whose fiber

over each r ∈ (ε′, ε′′) is B̄r. It follows by again applying Lemma 6.2.16 of [LNS20]

that shrinking ε does not affect the fibration.

The proof of independence of local coordinates in the case of an isolated critical

point can be found in, e.g., [LNS20]. The proof in general is similar to the proof of

independence of ε, using a family of coordinate systems parameterized over the unit

interval — we can then use a similar compactness argument to the above, with the

Whitney condition (a) replacing the Thom condition (af ), to show that there exists

an open neighborhood of the origin in R≥0 small enough that, for ε > 0 contained in

it, all of the boundary spheres S
(t)
ε for the varying coordinate systems parameterized

by t ∈ [0, 1] are transverse to the Thom stratification. (Strictly speaking, we must

here use a Nash modification of each stratum closure individually to account for
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behavior at the origin, but we omit the details.) We can then apply the compactness

argument together with Thom (af ) again to show that there is δ small enough that

Thom’s First Isotopy Lemma applies to the restriction of f×id[0,1] to the intersection

of f−1(D∗
δ ) × [0, 1] with {(p, t) ∈ Cn+1 × [0, 1] | p ∈ B̄

(t)
ε }, so that the result again

follows by Lemma 6.2.16 of [LNS20].

We now make the following definitions:

Definition 4.1.5 ([Mil68; Lê77]). Let f : X → C be a nowhere-constant holomorphic

function on a smooth complex-analytic space. Considering the germ of f at a point

x ∈ X, we call the fibration of Theorem 4.1.4 the Milnor fibration of f at x. We

call its fiber the Milnor fiber of f at x and denote it by Ff,x — if the point x

is clear from context, we drop it from the notations and terminology. We call the

isotopy class of the diffeomorphism from Ff to itself induced by transport around a

loop around the origin in the punctured disk (which is well-defined — see [LNS20])

the Milnor monodromy.

For a non-constant germ f : (Cn+1, 0) → (C, 0) and a given coordinate system

on Cn+1, we say that a choice of ε > 0 small enough to define the Milnor fibration

is a Milnor radius for f at the origin.

Note that the original construction in [Mil68] not quite the same — in the parlance,

what we have defined is the Milnor tube fibration, whereas Milnor’s original definition

was of the Milnor sphere fibration. Since the two are equivalent (e.g., [Dim92]), we

will suppress this distinction and work only with the fibration constructed in Theorem

4.1.4.

We note also the following well-known result:

Proposition 4.1.6. Let f : X → C be a nowhere-constant holomorphic function on

a smooth complex-analytic space and suppose we are given a complex-analytic Whitney

stratification of f . Then the diffeomorphism type of the local Milnor fibrations of f at

points along each stratum is constant.
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We omit the proof, which uses Thom’s Second Isotopy Lemma, the relative version

of Lemma 3.1.14 mentioned in Subsection 3.2.1.

4.1.2 The Global Milnor Fibration of a Homogeneous Polynomial

In the special case of a homogeneous polynomial, we have another way of producing a

fiber bundle by discarding the singular fiber:

Proposition 4.1.7 (e.g., [Dim92]). Let f : Cn+1 → C be a nonzero homogeneous poly-

nomial of degree d. Then the restriction f : f−1(C∗) → C∗ defines a holomorphically

locally trivial fibration, the fiber of which is a d-fold covering space of the complement of

the hypersurface cut out by f in Pn.

The proof of this is by observing that f(tx0, . . . , txn) = tdf(x0, . . . , xn) and using local

branches of d
√
− to obtain the local trivializations; taking the quotient of f−1(1) by the

action of the dth roots of unity yields the claimed covering map.

Definition 4.1.8 (e.g., [Dim92]). Let f : Cn+1 → C be a nonzero homogeneous polyno-

mial. Then we call the restriction f : f−1(C∗) → C∗ the global or affine Milnor

fibration of the homogeneous polynomial f .

This terminology is justified by the following observation:

Proposition 4.1.9 (e.g., [Dim92]). Let f : Cn+1 → C be a nonzero homogeneous polyno-

mial. Then the affine Milnor fibration of f is diffeomorphically equivalent to the Milnor

fibration of f at the origin.

The proof is essentially by the fact that f behaves well under scaling of Cn+1 by a

positive real factor, which also gives us the following well-known result:

Proposition 4.1.10. Let f : Cn+1 → C be a nonzero homogeneous polynomial. Then

every positive real number is a Milnor radius for f at the origin.

The proof is by considering a complex-analytic Thom stratification of f such that the

origin is its own stratum and every stratum is a conic subset of Cn+1 — this can be
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obtained, for example, by taking the stratification induced by a Whitney stratification of

the hypersurface cut out by f in Pn and using Theorem 4.2.1 of [BMM94].

Analogues of these results hold more broadly for weighted-homogeneous polynomi-

als on Cn+1 for any choice of weights, but we will not pursue the matter here.

4.1.3 First Relations with the Critical Locus

As discussed, holomorphic functions are already locally trivial at non-critical points —

in particular, at such a point the Milnor fibration in fact extends over the origin in C

to a trivial fibration over the disk with fiber an open ball of the appropriate dimension

(Figure 4.1). Hence, at least in a crude way, the Milnor fibration of a function f at a point

depends on the local structure of the critical locus Σf there. The following theorem of

Milnor (in the algebraic case, and Hamm, in the holomorphic case) for isolated singularities

beautifully refines this notion:

Theorem 4.1.11 ([Mil68; Ham71]). Let f : (Cn+1, 0) → (C, 0) be a non-constant holo-

morphic function germ, and suppose that 0 is an isolated point of Σf . Then the Milnor

fiber of f at the origin is homotopy-equivalent to a wedge sum of µf n-spheres S
n, where

µf := dimCOΣf ,0.

Definition 4.1.12. The integer µf of Theorem 4.1.11 is called the Milnor number of f

at the origin. In situations where the point in question must be specified, we will

also denote this by µf,0.

Here µf is finite precisely because the origin is an isolated point of Σf ; hence OΣf ,0 is

Artinian and the dimension over C is simply its length. Note, crucially, that this result

and definition depend on the structure of Σf as a complex-analytic space, which is to say

of the Jacobian ideal Jf := (Jf )0 in the local ring OCn+1,0 at the origin; as a set, Σf is

simply a point, by hypothesis.

In the simplest case, we have the following widely-used terminology:

Definition 4.1.13. Let f : (Cn+1, 0) → (C, 0) be a non-constant holomorphic function

germ, and suppose that 0 is an isolated point of Σf . Then, if µf = 1, we say that
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the origin is a non-degenerate critical point, quadratic singularity, or Morse

point of f .

It is not difficult to see that in this case we can, up to a change of coordinates, take

f to be the sum of the squares of all coordinate functions, and so Theorem 4.1.11 can be

verified explicitly. Indeed, in this case the result was known before Milnor’s work, forming

the basis of Picard-Lefschetz theory, a complex-analytic analogue of Morse theory

— see, e.g., [AGV88] and [GM88] respectively.

Theorem 4.1.11 naturally leads us to wonder what the local structure of Σf as a

complex-analytic space can tell us about the Milnor fiber in the case of a non-isolated

critical point of f . This will be the inspiration for our main results of Section 4.3. For

now, we content ourselves with the following result:

Theorem 4.1.14 ([KM75]). Let f : (Cn+1, 0) → (C, 0) be a non-constant holomorphic

function germ and let s := dim Σf be the dimension of the critical locus as a complex-

analytic space germ at the origin. Then the Milnor fiber Ff is at least (n−s−1)-connected.

Since the Milnor fiber of f has the homotopy type of a real cell complex of dimension

at most n (see, e.g., Section 1.5 of the Introduction of [GM88]), this has the following

immediate consequence:

Corollary 4.1.15. Let f : (Cn+1, 0) → (C, 0) be a non-constant holomorphic function

germ and let s := dim Σf be the dimension of the critical locus as a complex-analytic

space germ at the origin. Then the reduced integral homology of the Milnor fiber satisfies

H̃i(Ff ) = 0 for all i ̸∈ [n− s, n].

4.2 Background on the Milnor Fibration in Families

Our results in Section 4.3 will be relative in nature — that is, they will concern the

behavior of the Milnor fibration under deformations of the function being considered. As

we can surmise by starting with any function with a critical point at the origin and pre-

composing it with a family of translations of the domain moving the origin off the critical
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locus, we cannot expect deformations to preserve the Milnor fibration in general. However,

as Proposition 4.1.6, it is not entirely out of the question to find conditions under which

perturbing the function preserves the critical locus.

Here we will review a selection of such conditions and related results from the literature

— in keeping with our goal of understanding of the Milnor fibration using the machinery of

complex-analytic spaces, we will consider only holomorphic deformations, although some

authors which are only continuous or satisfy some weaker constraint than holomorphicity.

In particular, we will consider the following situation:

Definition 4.2.1. Let f : (Cn+1, 0) → (C, 0) be a non-constant holomorphic function

germ. A germ of a deformation of f is defined to be the pair (F, π) for F :

(Cn+1+u, 0) → (C, 0) a holomorphic function germ and π : (Cn+1+u, 0) → (Cu, 0)

the projection onto the last u coordinates such that the restriction of F to π−1(0) is

our original germ f .

If F : X × U → C is a holomorphic function for X a smooth complex-analytic

spaces and U a neighborhood of the origin in Cu, π : X × U → U is the projection,

and F is nowhere constant on the fibers of π, we say that the pair (F, π) is a

deformation of F ’s restriction to each fiber of π−1(0) if its germ at each point of

X × U is a deformation.

4.2.1 Tame Deformations and Splitting Techniques

As is often the case for local triviality statements in the study of singularities, many

of our results on the consistency of the Milnor fibration under deformation depend on

Thom’s Isotopy Lemmas. The main challenge in proving such results from this perspec-

tive will then, as in Subsection 4.1.1, be to ensure the transversality of smooth fibers to

appropriately-chosen boundary spheres. To keep track of such failures, we can consider

the following object:

Definition 4.2.2 ([JST]). Let U be a smooth complex-analytic space, X̃ an open neigh-

borhood of 0 × 0 in Cn+1 × U , and π : X̃ → U the projection. Let F : X̃ → C be
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a holomorphic function nowhere constant on the fibers of π and, fixing a coordinate

system on Cn+1, let ρ : Cn+1 → R≥0 be the squared Euclidean distance from the

origin. Letting ΣF×π×ρ denote the locus where this function’s real Jacobian matrix

drops rank, we define the Milnor set of F × π to be the closed subset

M(F × π) := ΣF×π×ρ \ (F × π)−1((F × π)(ΣF×π))

of X̃.

Thinking of U as the parameter space of the family of holomorphic functions defined

by F and π, we see that this is exactly the closure of the locus where the smooth fibers

of functions in the family fail to be transverse to the corresponding boundary spheres —

hence controlling the Milnor set will be enough to give us the kind of consistency results

we seek. Specifically, we can define:

Definition 4.2.3 ([JST]). Let f : (Cn+1, 0) → (C, 0) be a non-constant holomorphic

function germ and (F, π) a germ of a deformation of f . Then we say that this

deformation is tame if F has a representative on an open subset of Cn+1+u such

that M(F × π) ∩ π−1(0) ∩ ΣF×π ⊆ 0.

This is to say that none of the critical points of f (since π−1(0) ∩ ΣF×π is equal to

Σf ), except possibly the origin, are approached by sequences of points where the smooth

fibers of F × π fail to be transverse to the corresponding spheres centered at the origin.

In these circumstance, our deformation preserves the smooth fiber in the following sense:

Theorem 4.2.4 ([JST]; cf. [Hof]). Let f : (Cn+1, 0) → (C, 0) be a non-constant holomor-

phic function germ and (F, π) a germ of a tame deformation of f .

Then, for each ε > 0 in a sufficiently small open neighborhood of the origin in R≥0,

we can choose small enough δ > 0 and γ > 0 such that F is defined on Bε × Bγ and, if

we let ∆ := (F × π)(ΣF×π) be the image of the representative of the critical locus on this
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open set, the restriction

F × π : (Bε ×Bγ) ∩ (F × π)−1((Dδ ×Bγ) \ ∆̄) → (Dδ ×Bγ) \ ∆̄

is a diffeomorphically locally trivial fibration. Here Bε ⊂ Cn+1, Dδ ⊂ C, and Bγ ⊂ Cu are

the open balls of the specified radii.

The proof is by applying Thom’s First Isotopy Lemma 3.1.14 on B̄ε×Bγ , analogously

to the proof of Theorem 4.1.4. Note that the statement of this theorem differs slightly

from the one in [JST], insofar as we allow more parameters and do not here claim the

fibration is independent of the choices made. In the case of a one-parameter family, as in

[JST], such independence can be established since ∆ is well-defined as a germ of a closed

complex-analytic curve (Proposition 2.4 of [JST]); in the general setting, this is not known

a priori and so ∆ must be defined with reference to the chosen representative for F .

Since the statement of the result is somewhat technical, let us take a moment to

understand its main application. We can see that, if ε is sufficiently small, the restriction

of this fibration over (Dδ × 0) \ ∆̄ = D∗
δ (this equality can be verified by restricting

over every curve and applying Proposition 2.4 of [JST], by the Curve Selection Lemma

mentioned in Subsection 4.1.1) is simply the Milnor fibration of f at the origin. Hence the

fiber of the fibration guaranteed by the theorem is Ff and so perturbing f by changing

the parameters slightly still gives us information about the Milnor fiber of f — indeed, we

can study the monodromy through perturbation in the family as well by moving a loop

appropriately in (Dδ ×Bγ) \ ∆̄.

Observe, however, that some care must be taken — as noted in [JST], it is a well-known

issue in the study of families of holomorphic functions that the consistency of the Milnor

radius is not guaranteed. That is, although the restriction of the fibration in Theorem

4.2.4 over a parameter value other than 0 has fibers given by the corresponding function

in the deformation, it need not be the case that ε remains a valid Milnor radius for the

deformed function, and so the theorem does not guarantee the constancy of the actual

Milnor fibers in the family, merely that of the “semi-local smooth fibers” defined by the
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radius ε.

Although this is in some respects a disadvantage, since it limits the utility of Theorem

4.2.4 in showing that different functions have the same Milnor fiber, it also grants us a

powerful tool: the ability to split the critical locus into simpler pieces and compute the

contributions of each to the homology of the Milnor fiber separately. To be precise, we

have the following result:

Theorem 4.2.5 ([Sie87]). In the situation of Theorem 4.2.4, consider t ∈ Bγ and set

ft := F |Bε×t. Suppose that ∆̄ ∩ (Dδ × t) is a finite set of points q1, . . . , qr and take

D1, . . . ,Dr disjoint open disks around the respective qi. Let vi ̸= qi be points of Di for all

i and let v be a point of Dδ × t disjoint from all Di.

Then, if we set E := ft
−1(Dδ × t), F := ft

−1(v), Ei := ft
−1(Di) for all 1 ≤ i ≤ r, and

Fi := ft
−1(vi) for all 1 ≤ i ≤ r, we have

H̃k(Ff ) ∼= Hk+1(E,F) ∼=
r⊕

i=1

Hk+1(Ei,Fi)

for all integers k and f the original function being deformed.

Hence we can assess the homological contributions of each critical value of the deformed

function separately — for examples of the use of this theorem, see [ST17] and Example

9.2 of [Hof], which we will revisit as Example 4.3.3.

4.2.2 Morsification and Finite Determinacy

The tame deformations of Definition 4.2.3 are useful essentially because of their good

behavior near the boundary of a small sphere around the origin over the parameter value

0. One very natural situation where this occurs is the case of isolated singularities:

Proposition 4.2.6. Let f : (Cn+1, 0) → (C, 0) be a non-constant holomorphic function

germ, and suppose that 0 is an isolated point of Σf . Then every deformation of f is tame.

This is immediate since in this case Σf is already set-theoretically contained in the

origin. It then becomes profitable to consider the following notion:
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Definition 4.2.7 (e.g., [AGV88]). Let X a smooth complex-analytic space and f : X →

C a holomorphic function with only isolated critical points. Then, if (F, π) is a

deformation of f such that F ’s restriction over any parameter value other than 0 has

only Morse critical points (Definition 4.1.13), we say that (F, π) is a Morsification

of f .

Such deformations are easy to construct in general by the density of Morse functions

(e.g., [GM88]) — the key point here is that the tameness of deformations of functions

with isolated critical points guarantees that a Morsification of such a function will locally

preserve smooth fibers by, e.g, Theorem 4.2.4 and so allow us to understand the original

function in terms of the Picard-Lefschetz theory of the functions we deform to.

For functions with non-isolated criticalities, such deformations will not be tame in

general, if at all, and hence are much less useful in the study of the Milnor fibration.

However, there turns out to be a class of deformations which usefully split off Morse

points from the critical locus of the function germ being deformed: unfoldings of the

germ through an ideal with respect to which it has finite extended codimension. We

do not give the exact definitions of these terms, which can be found in, e.g., [Bob04] —

the key point, for which see [Bob04], or more explicitly the proof of Proposition 8.1 in

[Hof], is that such an unfolding is holomorphically trivial locally at points away from the

origin. Hence we arrive at following proposition, which together with Theorem 4.2.4 gives

essentially the result of Theorem 2.2 of [Bob04]:

Proposition 4.2.8. An unfolding of a function germ through an ideal with respect to

which it has finite extended codimension is tame.

This will follow from Theorem 4.3.1, since such unfoldings satisfy its hypotheses, as

we will discuss in Subsection 4.3.1.

4.2.3 Lê Numbers

We now recall an entirely different theory of deformations for the Milnor fibration, the

foundation of which lies in results on the behavior of the Milnor fibration upon restriction
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to a hyperplane through the origin. These are based on the following construction:

Definition 4.2.9 ([Lê73]). Let X be an open neighborhood of the origin in Cn+1 and

f : X → C a holomorphic function. For a linear form ℓ : Cn+1 → C, set Cℓ to be

the locus where the differential of f × ℓ drops rank.

Then the polar locus of f relative to the direction defined by ℓ is the closed set

in X given by Γf,ℓ := Cℓ \ Σf .

This captures the failure of the family of hypersurfaces defined by ℓ to be transverse to

the smooth points of fibers of f , much like the Milnor set of Definition 4.2.2. By a result

of Lê, we can then use this to control the relationship between the Milnor fibration of f

and that of the restriction of f to the hyperplane cut out by ℓ:

Theorem 4.2.10 ([Lê73]). Let f : (Cn+1, 0) → (C, 0) be a non-constant holomorphic

function germ and ℓ : Cn+1 → C a generic linear form. Then Γf,ℓ is a well-defined

complex-analytic curve germ at the origin and, if we let H be the hyperplane cut out

by the vanishing of ℓ, the Milnor fiber Ff is homotopy-equivalent to a space obtained by

attaching to Ff |H a number of n-cells equal to the intersection number (see [Ful98]) at

the origin of H and the hypersurface cut out by the vanishing of the germ f .

As noted in [Mas95], this implies Theorem 4.1.14. Unfortunately, Lê’s methods, which

are Morse-theoretic, do not give insight into the nature of the attaching map, so iterative

application of this result is not sufficient to understand the Milnor fiber of f completely.

However, such an approach can be used to establish strong relative results on Milnor fiber

consistency in deformations. Specifically, we can use the Lê numbers (e.g., [Mas95]) —

quantities capturing the relative polar information which arises from iteratively slicing by

the coordinate hyperplanes of a given coordinate system — to obtain the following result:

Theorem 4.2.11 ([Mas95]). Let f : (Cn+1, 0) → (C, 0) be a germ of a non-constant holo-

morphic function and s := dim Σf the dimension of the critical locus as a complex-analytic

space germ at the origin. Then, for a given deformation of f and a coordinate system on

Cn+1 subject to certain effective genericity conditions with respect to the deformation, the
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constancy of the Lê numbers at the origin under the deformation implies the constancy

under the deformation of the homology of the Milnor fiber at the origin. If s ≤ n − 2,

the homotopy type of the Milnor fibration is constant under the deformation; if, moreover,

s ≤ n− 3, the same is true of the diffeomorphism type.

This result shows that the strengths and weaknesses of the approach of controlling

deformations through Lê numbers are more or less opposite to those of tameness-based

methods; constancy of Lê numbers guarantees consistency of Milnor fibers themselves, not

just semi-local smooth fibers, but by this very fact does not allow for splitting techniques

in the style of Theorem 4.2.5.

4.3 Results Based on Flatness

We now turn to our main results, those which impose control over Milnor fibration’s be-

havior under deformation through algebraic means. The results of Subsection 4.1.3 suggest

that the topology of the Milnor fiber of a germ f should be recoverable through analysis

of the structure of the critical locus as a complex-analytic space germ. In particular, we

should expect a deformation (F, π) of f to give us useful information about the Milnor

fibration so long as it also defines a deformation of the critical locus over the parame-

ter space — since flatness is, as we have noted in Chapter 2, the algebro-geometric and

complex-analytic notion of what it means for a map to be a deformation, and the critical

locus ΣF×π of any representative of the deformation gives the critical loci of the functions

in the family on restriction to the corresponding fibers of π, we hope to find results in

terms of the flatness of ΣF×π over the parameter space.

In Subsection 4.3.1, we will see that this is true in an embedded sense — that is, if the

embedding of the critical locus into the ambient total space of the deformation is flat, the

deformation will be tame. Subsections 4.3.2 and 4.3.3 will explore consequences of this in

well-behaved special cases.
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4.3.1 The Main Theorem

As mentioned, we will here establish that the flatness of the embedding of the critical locus

is enough to guarantee that a deformation is tame. Indeed, a stronger but more technical

result will be true — as in the definition of tameness itself, we need only constrain behavior

away from the origin on the special fiber of the deformation.

Specifically, recalling our definitions of a deformation germ (F, π) (Definition 4.2.1), the

critical locus ΣF×π of F × π (Definition 3.1.4), the flatness of a locally closed embedding

(Definition 2.3.14), and the tameness of a deformation (Definition 4.2.3), we have:

Theorem 4.3.1 ([Hof]). Let f : (Cn+1, 0) → (C, 0) be a non-constant holomorphic func-

tion germ and (F : (Cn+1+u, 0) → (C, 0), π : (Cn+1+u, 0) → (Cu, 0)) a germ of a defor-

mation of f . Suppose that the intersection with π−1(0) of the germ at the origin of the

non-flat locus of the embedding ΣF×π ↪→ Cn+1+u over Cu is set-theoretically contained in

the origin. Then (F, π) is a tame deformation of f .

Proof We take a representative of F and apply Theorem 3.3.3 to obtain a complex-

analytic Whitney stratification of the neighborhood of the origin in Cn+1+u on which

it is defined such that strata not contained in the non-flat locus satisfy the Thom

condition with respect to the ambient stratum. By the reasoning of Lemma 4.1.3,

the spaces Sε × Cu will be transverse to the strata at points of π−1(0) sufficiently

close to the origin. Hence, as in the proof of Theorem 4.1.4, the Thom condition then

lets us produce neighborhoods of each point of ΣF×π ∩ π−1(0) = Σf × 0 outside the

non-flat locus which are disjoint from the Milnor set M(F × π). The result follows.

We state the weaker but more legible version of this result independently:

Corollary 4.3.2. Let f : (Cn+1, 0) → (C, 0) be a non-constant holomorphic function germ

and (F : (Cn+1+u, 0) → (C, 0), π : (Cn+1+u, 0) → (Cu, 0)) a germ of a deformation of f .

Suppose the germ at the origin of the embedding ΣF×π ↪→ Cn+1+u is flat over Cu. Then

(F, π) is a tame deformation of f .
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Note by Theorem 4.2.4 that deformations satisfying these properties can then be used

to study the Milnor fibration. As an example, we compute the homology of a polynomial’s

Milnor fiber using our result and a modification of the methods of [ST17], which are

themselves based on Theorem 4.2.5:

Example 4.3.3 ([Hof]). Consider the holomorphic function f : C3 → C given by the

polynomial equation f(x, y, z) = x3+xy2z and the two-parameter deformation given

by F ((x, y, z), s, t) = (x2 + y2z− s)(x− t). We will use this deformation to compute

the Milnor fiber of f at the origin.

First note that, since F is defined over Q, the Jacobian ideal JF×π = (∂F∂x ,
∂F
∂y ,

∂F
∂z )

is as well. Using a computer algebra system such as Macaulay2, Singular, or

Oscar, we find by direct computation that, for R = Q[x, y, z, s, t], the normal cone

CSpecR/JF×π
SpecR is given by Spec(R/JF×π)[w0, w1, w2]/(yw1 − zw2), and this is

flat over the parameter space SpecQ[s, t] at the origin. By the faithful flatness of

field extensions, the construction of the normal cone and flatness result are preserved

under base change to C (for the normal cone, see Lemma 2.3.15). We can then use

Proposition 2.1.6 to show that they are preserved under analytification as well.

Hence we can conclude by Theorem 4.3.1 that this deformation is tame — by

Theorem 4.2.4, it then defines a local fibration over the complement of the discrim-

inant closure ∆̄. By computing the kernel of the map Q[v, s, t] → R/JF×π with

v 7→ F and again using our flatness results, we can see that ∆̄ is defined in C× C2

by the equation 4vst4− 8vs2t2− 4v2t3 + 4vs3 + 36v2st− 27v3, where v is the coordi-

nate on the target C of F . It now suffices, for ε > 0 any Milnor radius for f at the

origin, to compute the intersection with Bε×C2 of the fiber of F ×π over any point

outside this locus which is close enough to the origin with small enough parameter

values s and t.

For the sake of simplicity, we restrict over the curve s = 5t2 in the parameter

space; let ft denote the restriction of F over a given value of t. The closure of the

discriminant is now given by 320vt6 + 176v2t3 − 27v3; by computing the irreducible
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components of the curve thus defined, we can now see that, for small values of t, our

critical values of ft near the origin will be 0, 8t3, and −40
27 t

3. We can now compute

the individual contributions of each point to the reduced homology of the Milnor

fiber by adapting the method of [ST17].

Specifically, we proceed as follows. Observe that, if we take the inverse image

under f of a small enough disk Dδ around the origin and intersect it with Bε, the

result will be homotopy-equivalent to the fiber f−1(0) ∩Bε, hence contractible. By

including the boundary and applying Lemma 3.1.14, we find that, for small enough

t ̸= 0, the space E := ft
−1(Dδ) ∩ Bε is contractible as well. Letting F be a smooth

fiber of ft in Bε, we then find that H∗+1(E,F) ∼= H̃∗(F) by the long exact sequence

in homology, and as noted Theorem 4.3.1 and Theorem 4.2.4 tell us that H̃∗(F) is

precisely the reduced homology of the Milnor fiber of f .

Let D0, D+, D− be sufficiently small disjoint open disks inside Dδ around the

critical values 0, 8t3, and −40
27 t

3 respectively. Observing that the transversal Milnor

fibration given by fixing z is a local product at all points of the critical locus where

z ̸= 0, we find that the special points (in the sense of [ST17]) are exactly q+ :=

(−t, 0, 0) and q− := (53 t, 0, 0); let B+ and B− be sufficiently small Milnor balls in

Bε around these points respectively. Also let U0,U+,U− be sufficiently small tubular

neighborhoods in Bε of the connected components Σ0 := V (x − t, y2z − 4x2) ∩

Bε,Σ+ := V (x+ t, y) ∩ Bε,Σ− := V (3x− 5t, y) ∩ Bε of the critical locus, which we

can compute by taking the minimal primes of JF×π. Indeed, by the argument in

[Hof], we can compute the associated primes of Jft from those of JF×π — see Figure

4.3 for a depiction of the critical locus in this case.

Then, if we let E0 := ft
−1(D0) ∩ U0, E+ := ft

−1(D+) ∩ (U+ ∪ B+), and E− :=

ft
−1(D−)∩ (U− ∪B−) and F0,F+,F− be the intersections of the smooth fibers of ft

over small non-critical values nearby the appropriate critical values with E0,E+,E−

respectively, we have

H∗+1(E,F) ∼= H∗+1(E0,F0) ⊕H∗+1(E+,F+) ⊕H∗+1(E−,F−)
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Figure 4.3: The critical loci of Example 4.3.3 over t = 0 and t ̸= 0 respectively (s = 5t2).

by homotopy retraction and excision.

We can now consider each of these relative homology groups independently. For

each of the groups H∗+1(E±,F±), we can take a further retraction of pairs to get

the relative homology of ft
−1(D±) ∩ B± and its intersection with a nearby smooth

fiber; by our reasoning above, this is simply the reduced homology of the Milnor

fiber of ft at the point q±. Since x− t is a unit in the local power series ring at this

point and multiplication by units does not affect the Milnor fiber, the point is a D∞

singularity and hence the reduced homology of the Milnor fiber consists of a single

Z-summand in degree 2.

Consider the remaining component Σ0 of the critical locus and note that E0 ≃

Σ0 ≃ S1. Thus, from the long exact sequence of a pair in homology and the fact that

the bounds of [KM75] imply Hi+1(E,F) ∼= H̃∗(F) ∼= 0 and hence Hi+1(E0,F0) ∼= 0

for i ̸∈ {1, 2}, we obtain a short exact sequence

0 → H2(E0,F0) → H1(F0) → H1(E0) → 0
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with H1(E0) ∼= Z and an isomorphism H3(E0,F0) ∼= H2(F0).

Now, by considering the transversal slices given by the level sets of the linear

function y, we see that the transversal type of the singularity is everywhere A1 on

Σ0 and the transversal Milnor fibration is a local product as before. Indeed, by noting

y ̸= 0 around Σ0 and writing ft = (x̃2 + z̃− 5t2)(x̃− t) in the coordinates (x̃, ỹ, z̃) =

(x, y, y2z), we obtain a global trivialization of the transversal Milnor fibration, so

F0 is homotopy equivalent to a torus and the map S1 × S1 ≃ F0 → E0 ≃ S1 is

simply the projection onto one factor — here we are able to ignore any issues near

the boundary of Bε by an appropriate homotopy retraction.

As such, H3(E0,F0) ∼= H2(F0) ∼= Z, and the map Z⊕Z ∼= H1(F0) → H1(E0) ∼= Z

is the projection onto a single factor and hence has kernel H2(E0,F0) ∼= Z. Combin-

ing this with our previous computation, we find that the reduced homology of the

Milnor fiber of f is given by

H̃i(F) ∼=


Z i = 1

Z⊕3 i = 2

0 else.

This example demonstrates that Theorem 4.3.1 can be used to obtain computational

results from deformations beyond the purview of the finite determinacy methods discussed

in Subsection 4.2.2 and the Lê number-based approach of Subsection 4.2.3. In the case

of finite determinacy, this is clear by our prior observation that unfoldings of the sort

used in Theorem 2.2 of [Bob04] are holomorphically trivial locally away from the origin

— in particular, their critical loci are as well, so this theorem is strictly less general than

Theorem 4.3.1, which allows for any deformation of the embedding of the critical locus,

not just the trivial one.

On the other hand, this deformation cannot have constant Lê numbers at the origin

since the origin is no longer even a critical point of the deformed function for nonzero

parameter values. As discussed in Section 8 of [Hof], the constancy of the Lê numbers is
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in general independent of the condition of Theorem 4.3.1.

4.3.2 Consequences for Homogeneous Polynomials

As discussed in Subsection 4.1.2, the Milnor fibration of a homogeneous polynomial cap-

tures, up to diffeomorphism, its global behavior over C∗. In particular, since Proposition

4.1.10 implies that tame deformations preserve the Milnor fibration, Theorem 4.3.1 can

be used to control the global behavior of a family of homogeneous polynomials:

Theorem 4.3.4 ([Hof]). Let Y be a connected complex-analytic space, and

F : Cn+1 × Y → C

a holomorphic map such that, for each point y ∈ Y , the map fy := F |Cn+1×y is a nonzero

homogeneous degree-d polynomial. Then, if we let π : Cn+1 × Y → Y be the projec-

tion, ΣF×π is a closed subcone of Cn+1 × Y over Y ; suppose that the natural projection

CPΣF×π
(Pn × Y ) → Y of the normal cone to its projectivization in the ambient trivial pro-

jective bundle is flat. Then the fibrations over C∗ induced by the fy as y varies throughout

Y are all diffeomorphically equivalent.

Proof We first observe that, by taking the reduction Yred of Y and pulling back along a

resolution of singularities (see [W lo09]) Ỹred → Yred, we may assume Y is smooth —

this may result in a parameter space Ỹred with multiple connected components, but,

since the fibration over any point of Ỹ is the same as the one over the corresponding

point of the connected space Y , proving the constancy along each connected com-

ponent will be sufficient to get consistency everywhere. Since the formation of the

ideal JF×π commutes with pullback along maps into Y in general and the flatness

hypothesis guarantees that the formation of the normal cone will do so as well by

Lemma 2.3.15, the passage from Y to Ỹred does not affect our hypotheses.

Now observe that the complement ΣF×π \ (0 × Y ) of the zero section in the crit-

ical locus is pullback of PΣF×π along the natural C∗-bundle map (Cn+1 × Y ) \
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(0 × Y ) → Pn × Y given by the quotient. In particular, since the bundle map

is flat, the formation of the normal cone again commutes with this pullback by

Lemma 2.3.15, and hence the flatness of CPΣF×π
(Pn × Y ) over Y implies that of

CΣF×π\(Y×0)((Cn+1 × Y ) \ (0 × Y )). Since flatness is a local property and the for-

mation of the normal cone commutes with localization, this is exactly to say that

CΣF×π
(Cn+1 × Y ) is flat over Y everywhere on Cn+1 × Y except possibly at 0 × Y .

Then, since the discriminant (F×π)(ΣF×π) in this case will simply be 0×Y ⊂ C×Y

by Proposition 4.1.7, we can apply Theorem 4.3.1 and Theorem 4.2.4 to obtain, for

each point y ∈ Y , a small neighborhood Ny of y and small enough values εy, δy > 0

such that the maps

fy′ : Bεy ∩ fy′−1(D∗
δy) → D∗

δy

as y′ varies in Ny fit together into a smooth locally trivial fibration over D∗
δy

×Ny.

In particular, these maps define smooth locally trivial fibrations over the punctured

disk which are all diffeomorphically equivalent.

However, since any positive number is a Milnor radius for a homogeneous polynomial

at the origin by Proposition 4.1.10, the fibrations we have defined for the fy′ in the

ball Bεy are, in fact, their Milnor fibrations at the origin, and hence diffeomorphic

to their affine Milnor fibrations by Proposition 4.1.9. As such, the diffeomorphism

type of the affine Milnor fibration of fy is locally constant on Y , hence constant over

all of Y if we assume connectedness. As discussed, the result follows.

We can apply this result to obtain a clearer picture of how the Milnor fibration varies

over the space of all homogeneous polynomials:

Corollary 4.3.5. Let Hn,d
∼= P(n+d

n )−1 be the space of degree-d hypersurfaces in Pn, so

that the
(
n+d
n

)
projective coordinates of each point give the coefficients up to scaling of the

monomial terms in a homogeneous polynomial defining the corresponding hypersurface.

Then iteratively applying Theorem 4.3.4 gives us a partition of Hn,d into finitely many

disjoint Zariski-locally-closed subsets so that the fiber diffeomorphism type of the affine
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Milnor fibrations of the corresponding defining polynomials is constant along each subset.

The proof of this result, which can be found in [Hof], is by viewing Hn,d as the pro-

jectivization of the space of all degree-d polynomials and applying Theorem 4.3.4 repeat-

edly to the universal family of degree-d polynomials over this space and its restriction to

successively-chosen closed subspaces thereof, defined by failures of flatness of the appro-

priate normal cone.

4.3.3 Consequences for Functions with Critical Locus a Complete Inter-

section

Consider the following expansion of Definition 2.4.5:

Definition 4.3.6. Let M be a smooth complex-analytic space and X a closed subspace of

M , with I the corresponding ideal sheaf. Let c := dimM −dimX and suppose that

I is generated by c globally-defined holomorphic functions on M . Then we say that

X is a complete intersection of codimension c in M .

By using the map M → Cc defined by such a choice of generators, applying Theorem

2.4.4 at each point of X, and passing to the appropriate completion, we can see that the

local ring of such a complex-analytic space at any point will be a local complete intersection

ring in the sense of Definition 2.4.5. Note that the flatness of the map M → Cc implies

also that X ↪→M is a regular embedding by Theorem 2.4.1.

One of the main restrictions which appears frequently in the literature surrounding

the finite determinacy methods of Subsection 4.2.2 is the hypothesis that the function to

be deformed have a critical locus which is a complete intersection in the ambient space at

least set-theoretically (e.g., [Sie83; Sie87; Sie88; Pel85; Pel88; Pel89; Pel90; Zah94; Ném99;

Gaf07]). If we require this to be true on the level of complex-analytic spaces, at least away

from the origin, we find that Theorem 4.3.1 can be used to show that any deformation of

such a function which respects the complete intersection structure is tame:

Proposition 4.3.7 ([Hof]; cf. [Zah94; Gaf07]). Let I = (g1, . . . , gc) ⊂ OCn+1,0 be an ideal

defining a germ at the origin of a complete intersection of codimension c in Cn+1. Let
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f : (Cn+1, 0) → (C, 0) be a non-constant holomorphic function germ such that the Jacobian

ideal Jf := (Jf )0 is contained in I and j(f) := dimC I/Jf is finite.

Suppose we have germs G1, . . . , Gc, F : (Cn+1+u, 0) → (C, 0) of deformations of g1, . . . , gc, f

respectively over a fixed parameter space (Cu, 0) such JF×π := (JF×π)0 is contained in

Ĩ := (G1, . . . , Gc), where π : (Cn+1+u, 0) → (Cu, 0) is the projection. Then the in-

tersection with π−1(0) of the germ at the origin of the non-flat locus of the embedding

ΣF×π ↪→ Cn+1+u over Cu is set-theoretically contained in the origin.

In particular, (F, π) is tame.

Proof The last statement follows from the rest of the proposition by Theorem 4.3.1.

Let (S, 0) be the complex-analytic space germ cut out in (Cn+1+u, 0) by Ĩ — more

or less by definition, this is a germ of a complete intersection of codimension c in

the ambient space. Its flatness over Cu is immediate by Proposition 2.4.6; to relate

this to our critical locus, consider the short exact sequence

0 → Ĩ/JF×π → OΣF×π ,0 → OS,0 → 0

of OCn+1+u,0-modules and observe by the long exact sequence in Tor and the flatness

of OS,0 over OCu,0 that it remains exact on restriction over the origin in Cu.

As such, the fiber over 0 ∈ Cu of Ĩ/JF×π is precisely I/Jf . Our requirement that

j(f) < ∞ tells us exactly that I/Jf has finite length — in particular, its support

is zero-dimensional, hence concentrated at the origin in Cn+1 × 0, and indeed it is

empty if we have j(f) = 0. As such, Nakayama’s Lemma (e.g., Corollary 4.8 of

[Eis04]) tells us for any sufficiently small representative that the stalks of Ĩ/JF×π

will be zero at all points of Cn+1 × 0, except possibly at the origin if j(f) > 0.

Thus ΣF×π agrees with S as complex-analytic spaces at such points and so it will

be enough to show that the normal cone to (S, 0) in (Cn+1+u, 0) is flat over (Cu, 0).

However, since S ↪→ Cn+1+u is a regular embedding, the normal cone is a vector

bundle and hence the result follows from the flatness of S.



100

Bibliography

[AGV88] V. I. Arnold, S. M. Gusein-Zade, and A. N. Varchenko. Singularities of Differ-
entiable Maps Volume II. Monodromy and Asymptotics of Integrals. Modern
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man Akbulut, Turgut Önder, and Ronald J. Stern. International Press, 2009,
pp. 31–63.

[Zah94] Alexandru Zaharia. “Topological Properties of Certain Singularities with Crit-
ical Locus a 2-Dimensional Complete Intersection”. In: Topology and its Ap-
plications 60 (1994), pp. 153–171. doi: 10.1016/0166-8641(94)00009-3.


