Quantum Finite Automata and the Recognition
of the Regular Languages: A Survey

Alex Hof
December 6, 2017

1 Introduction

Among the simplest classical models of computation is the deterministic finite
automaton, or DFA. A DFA is a machine with a finite number of internal states
and no other memory which, given an input word in some fixed alphabet, reads
the word one character at a time and changes its internal state based on the
symbol read. Once the word has been read, the machine will either accept it
or reject it based upon the state it ends up in; the set of all words which a
machine M accepts is called the language recognized by M. It is well-known
that the set of languages which can be recognized by some DFA is precisely the
set of languages which can be generated by some regular expression; these are
the so-called regular languages.

In recent decades, however, there has been increasing interest in computa-
tional models which, rather than operating in a manner describable by classical
physics, take advantage of the strange behavior of quantum systems; such atten-
tion has been driven in part by results such as the celebrated algorithm of Shor,
which uses the power of quantum analogues to Turing machines to decompose
large numbers into their prime factors in polynomial time [11]. This algorithm,
along with others such as Grover’s algorithm for database lookups in time pro-
portional to the square root of the number of entries [5], suggests that quantum
algorithms have rich possibilities to offer us in terms of computational efficiency.
Therefore, it seems desirable to explore the properties of quantum computation,
and in particular to design and analyze counterparts of fundamental classical
models such as the DFA. In the case of the DFA, this counterpart is called a
quantum finite automaton, or QFA.

There exist several distinct definitions of what a QFA is and how exactly it
operates, the two most popular being that of Moore and Crutchfield [7] and that
of Kondacs and Watrous [6]. In broad strokes, these formulations all essentially
operate like DFAs, but with the distinction that, instead of simply occupying
one internal state, they exist in a complex superposition of states which evolves
according to operators corresponding to the symbols of the input word. Due to
the effects of observation on a quantum system, however, one faces a choice not
found in the classical case: namely, how often the machine should be observed.

The automata of Moore and Crutchfield allow exactly one observation, after
the entire input word has been read, while those of Kondacs and Watrous are
observed after every character of input; therefore, the former have come to be
known as measure-once quantum finite automata, or MO-QFAs, and the latter
measure-many quantum finite automata, or MM-QFAs. Comparison of these
models by Ambainis and Freivalds [1] and Brodsky and Pippenger [3] demon-
strated that MM-QFAs are capable of recognizing a larger class of languages
than MO-QFAs, where recognition is couched in terms of giving the correct
classification of any string with some bounded probability of error.

However, both models suffer from a troubling flaw: they are strictly weaker
than their classical counterparts, in that they recognize only strict subsets of
the regular languages. This problem arises because the requirements for a valid
quantum state impose strict limitations on the allowable transition operators,
corresponding in the classical case to the restriction that each symbol permute
the states of the machine [3]. This paper will examine various efforts to ame-
liorate this problem; of particular interest will be the multi-letter automata of
Belovs et al. [2], their subsequent analysis by Qiu and Yu [8], and the recent
multihead automata of Ganguly et al. [4].

Finally, we propose a model, which we have named the repeating quantum
finite automaton, which is capable of recognizing the regular languages but
requires exponential time to do.

2 Preliminaries

2.1 DFAs and the regular languages

To understand the motivations for the definitions we will explore, it is will be
helpful to have a rigorous picture of their classical counterpart. Formally, a
deterministic finite automaton is a quintuple M = (Q, 3, §, gy, Qacc), where the
entries are as follows:

e () is a finite set containing all of M’s internal states.

e Y is a finite set containing the input alphabet; that is, it is the set of all
characters allowable in words which are to be processed by M.

e):@Q XX — @ is M’s transition function; given the machine’s current
state and the next letter of the input word, it outputs M’s state after
processing that letter.

e go € Q is M’s start state; the machine begins every computation in this
state.

e Q.cc C Q isthe set of M’s accepting states; once the letters of the input
word are exhausted, M will accept the word if its current state is in Qacc
and reject it otherwise.

Figure 1: A DFA accepting the language (a U b)*a

M runs by reading the letters of its input word, which is a finite, possibly
empty sequence of characters of X, one letter at a time and evolving its state,
which is initially qg, according to §. After all characters have been processed,
the machine will accept the word if the state it has ended up in is an element
of Qacc and reject it otherwise. The computation has no output other than
the decision to accept or reject the input word; unlike a Turing machine, which
might write the result of a computation to its tape, or indeed an actual personal
computer, which can relay a wide variety of information to the user through its
display, a DFA can do nothing but say “Yes” or “No”.

The language L(M) recognized by M is defined to be the set of all strings
of characters of ¥ which M accepts. A DFA on the alphabet {a,b} accepting
the language of words ending with a is depicted in Figure 1; the double circle
indicates that ¢; is an accepting state and the arrows and characters above them
represent the transition function. The quintuple representation of this machine
is ({qo,q1},{a,b},9,q0,{q1}), where § is defined as

o —
0(q,0) = « 1 a=a,
q ifo=0b

If this machine is given the word aab as input, it will begin in state gg, transition
to g1 after reading the first a, remain in ¢; upon reading the second a, and finally
transition back to gg on reading b. Since there are no more input letters, the
machine will halt at this point; ¢¢ is not an accepting state, so the string will
be rejected.

At this point it is natural to wonder whether there exists a DFA accepting
each possible language. That is, if 3 is a finite alphabet and L is a subset of ¥*,
the set of all finite words formed from letters of X, can we create a DFA M such
that L(M) = L7 As it turns out, this is not possible in general. For example, the
language {a™b™ | n > 0} of words from {a,b}* which consist of some number of
as followed by the same number of bs cannot be recognized by any DFA, since
the only memory available is the internal state of the machine and there are
infinitely many possible numbers of as; because a DFA may have only finitely
many states, there is no way for the machine to accurately remember the number
of as encountered when processing the string in all possible cases.

Therefore, we should refine our question slightly and instead ask precisely
which languages can be recognized by DFAs. Such languages are called regular

languages. We can define this class of languages, as we have done, in terms
of the model of computation which recognizes them; however, it is also useful
to instead think about the constructions which generate them. Specifically, the
regular languages are those which can be generated by the regular grammars
or, equivalently, by the regular expressions, constructions which we will now
explore.

A grammar, as defined in [9], is a construct which encodes rules for gen-
erating allowable strings. Formally, a grammar is a 4-tuple G = (V, X, R, 5),
where the entries are as follows:

e V is a finite set called the rule alphabet.

e > C V is the terminal alphabet of G; that is, the words G generates are
in ¥*. The set V' \ ¥ of symbols in the rule alphabet but not the terminal
alphabet is called the nonterminal alphabet of G.

e Risafinite set of rules, or productions, of the form x — y for x € V*\X*
and y € V*.

e S €V \ X is the nonterminal start symbol.

G is used to produce a string of ¥* as follows. We begin with a one-character
string in V* consisting our start symbol S. We then repeatedly apply our
production rules to the string by searching for a substring that matches the
left-hand side of any rule and replacing it with the string on the right-hand
side of the rule. We stop when we have eliminated all nonterminals from our
string, and the resulting element of ¥* is said to have been generated by G.
We denote by L(G) the language of all strings which can be generated by G.

A grammar G = (V, X, R, S) is said to be regular if, for every rule x — y
in R, two conditions hold. The first is that x consists of a single nonterminal
symbol; that is, our grammar operates solely by replacing nonterminals with
other strings without regard for the characters around them. The second is
that y is either the empty string, which we denote ¢, a string consisting of a
single terminal symbol, or a string consisting of a single terminal symbol followed
by a single nonterminal symbol. This limits the grammar to producing terminal
symbols one at a time in the order in which they appear in the generated string.

As an example, we can formalize the language accepted by the DFA of Figure
1 with the regular grammar ({a, b, S}, {a, b}, R, S), where R contains the rules
S —aS, S —bS, and S — a. To generate the string baba, we use the second
production, followed by the first, followed by the second, and conclude with the
third:

S — bS — baS — babS — baba

It is not difficult to verify that this grammar does in fact generate exactly the
language accepted by the machine.

Finally, we can also define the regular languages as those which are ex-
pressible as regular expressions. Since the definitions of an allowable regular
expression and of the language which it describes are both widely known and

somewhat involved, we do not reproduce them here, although we will occa-
sionally make use of them to express languages compactly, as in the caption
of Figure 1; for the interested reader, an overview can be found in the sixth
chapter of [9].

We also collect some well-known properties of regular languages, as set forth
in [9]. It is not difficult to see that every finite language is regular. Moreover,
the regular languages exhibit a number of important closure properties. Let
L, K C ¥* be regular languages over the same alphabet. Then the following are
also regular languages:

e L U K, the union of the two languages.

e [N K, the intersection of the two languages.

e LY =¥*\ L, the complement of L.

e L\ K, the difference of L and K.

o LK ={lk |l € L,k € K}, the concatenation of the two languages.

o I* ={wwy...w, | wy,ws,...,w, € Lyn > 0}, the Kleene star of L.
Note that this includes the empty string.

o L = {0109...0, | 01,00,...,00 € ¥*,0,0n_1...01 € L,n > 0}, the
reverse of L.

e ¢(L), where ¢ is a homomorphism on ¥*. That is, ¢ is a function
from ¥* to T™ for some finite alphabet T such that, for all z,y € X*,
d(zy) = ¢(x)¢p(y). Note that this necessitates ¢(g) = ¢, and indeed ¢ may
be uniquely defined by its behavior on .

Some of these properties may be inferred from the others, but we include them
all for the sake of completeness. The regular languages also satisfy the so-called
pumping lemma, which states that, roughly speaking, if w is a sufficiently long
string of a particular regular language L, there exists some nonempty substring
within w that can be repeated an arbitrary number of times or eliminated
without producing a string outside of L.

2.2 Hilbert spaces

The mathematical underpinnings of the quantum-mechanical concepts needed
to define QFAs are quite extensive, and to build them up from first principles
is outside the scope of this survey. Therefore, we assume a basic knowledge of
linear algebra and treat a number of other topics somewhat more perfunctorily
than they deserve.

Most of quantum mechanics takes place in the so-called Hilbert spaces, the
definition of which requires the notion of a Hermitian inner product. Con-
sider a vector space V over the field C of complex numbers. Then a binary
operator (-,+) : V¥ xV — C is called a Hermitian inner product on V if it has the
following properties:

o (u,v) = (v,u) for all u,v € V.

e (-,-) is linear in its second argument. By the first property, this implies
conjugate-linearity in the first argument.

e For every v € V, (v,v) is real and nonnegative. Moreover, (v,v) = 0 if
and only if v is the zero vector.

In this case V is called an inner product space. It is worth noting that many
authors, especially in mathematical circles, use a slightly different definition in
which the inner product is linear in the first argument and conjugate-linear
in the second; however, the given definition is more common in physics and
therefore more appropriate in this context.

An inner product induces a notion of length, or norm, on V. This norm,
denoted by || - || : V — R, is given by ||v|]| = /{(v,v), and it in turn induces a
notion of distance, or metric, on V. Specifically, the distance between any two
vectors is defined to be the norm of the difference between them; by inspecting
the definition of the inner product, one can verify that this is well-defined.

Let H be a vector space over C endowed with a Hermitian inner product.
Then we say that H is a Hilbert space if it is complete with respect to the
metric induced by the inner product. Rather than rigorously defining complete-
ness here, we will content ourselves with saying that it corresponds in some sense
to H containing all the points which “should” be in it; the interested reader is
encouraged to pursue studies in mathematical analysis.

In a Hilbert space, and indeed in any inner product space, there are several
additional notions that will be of interest to us. Suppose V is an inner product
space over C and u,v € V. Then we say that v and v are orthogonal if
(u,v) = 0. More generally, a set X C V is said to be orthogonal if each pair of
distinct elements in X is orthogonal. If X C V is orthogonal and, in addition,
each element of X has length 1 under the norm induced by the inner product
(that is, (z,z) =1 for each x € X)), we say that X is orthonormal.

Finally, it will be useful to review an alternate notation for the inner product
preferred by many physicists. If V is an inner product space (usually a Hilbert
space in practice) and v € V, it is common to instead denote v by the ket |},
where 1) is some arbitrary symbol defined by the author. If |¢) corresponds to
the vector v, the bra (1| denotes the linear operator from V to C which takes
any vector u to (v,u). Thus the bracket (u|¢), which denotes (| applied
to [1), is simply equal to the inner product of v with itself, or ||v]|?. In the
case where V is finite-dimensional, [¢) can be thought of as the column vector
corresponding to v with respect to some fixed orthonormal basis. In this case,
we can view (1| simply as the conjugate transpose of [¢) and (|¢)) as the
usual matrix product of (¢p| and |¢). In either framework, the bras and kets
behave normally as objects of their respective types, with the only notational
differences being that, as is often the case in linear algebra, we forsake the use
of parentheses for function arguments and that we always write (a|b) instead of

{allb)-

2.3 Quantum mechanics

We will now review the actual quantum-mechanical concepts necessary to define
QFAs; this discussion is largely based on the explication found in [6], with some
alterations made to yield greater generality and a few additional details included.

To define a particular quantum system, it is necessary only to specify a
Hilbert space H, which determines the allowable states of the system. In phys-
ical reality, a quantum system might, for example, correspond to an electron,
photon, or other such object; we will define them more abstractly as superpo-
sitions of the states in our automata. A quantum state is vector in H which
has norm 1; that is, our states live on a spherical shell of radius 1 around the
origin (where we generalize the notion of sphericality to complex vector spaces
of arbitrary dimension).

Given a system occupying some quantum state s € H, we are often interested
in obtaining information about that state. An observable is a decomposition

H=P 0.

acl

of H into subspaces, indexed by some set I, which are pairwise orthogonal; that
is, forany a # g € I, x € Oy, and y € Og, we have (z,y) = 0. An observation
of the system with respect to the given observable exposes some element of I
to the observer, where the probability of any particular o € I is given by the
squared norm of s’s projection onto O; if we define s, = Projy_(s), this is to
say that the probability of a is (84, S4). The condition ||s|| = 1 guarantees that
this will yield a valid probability distribution.

In addition to revealing information about the system, however, an obser-
vation actually alters it as well. If the observation returns o and s, is defined
as before, the system’s state following the observation will be given by Hj—z”
That is, the act of observing projects the system’s state onto the subspace cor-
responding to the value observed, and the result is renormalized to yield a valid
new state.

In quantum mechanics, the spaces constituting an observable are often thought
of as the eigenspaces of some operator on H which satisfies certain properties,
and in this case the value observed is the eigenvalue of the associated space.
For example, a measurement of some particle’s position along a given spatial
axis would use an observable defined by an operator with uncountably many
real eigenvalues, one for each possible location along the axis. However, this
conceptual machinery will not be necessary for our purposes.

At this point, it may be helpful to consider an example. Suppose we have
a classical system which may occupy one of two states, a or b, and we wish to
define its quantum analogue. Then we can let H = C[{a,b}] be the space of
C-linear combinations of a and b, which are taken to be linearly independent,
and uniquely define an inner product on H by stipulating that {a,b} is an
orthonormal set. In this case, H is a 2-dimensional Hilbert space.

Therefore, our quantum system, instead of simply being in one of the two
states, occupies a superposition s = z1a+ 29b, where z1, 20 € C and Z12z1 + 2222 =

|21]2 + |22]? = 1. We can define an observable corresponding to our original two
states by
H = Ca @ Cb;

observing the system with respect to this decomposition will cause it to assume
state a with probability |z;|? and b with probability |z2|? and relay the outcome
to the observer.

In fact, if we replace a by 0 and b by 1, we can see that the classical system
in question is essentially a bit, and so the analogue we have just defined is a
quantum bit, or qubit [10], one of the foundational constructs in the field of
quantum computing.

3 MO-QFAs

We are now prepared to examine quantum analogues to the deterministic finite
automata. We begin with the measure-once quantum finite automata of Moore
and Crutchfield [7], originally introduced in 1997.

3.1 Definition

Although Moore and Crutchfield introduced MO-QFAs, we will follow the equiv-
alent definition of Brodsky and Pippenger [3], who created more directly compa-
rable formalisms for MO-QFAs and MM-QFAs and appear to have introduced
the present terminology, although later sources use it without explicit citation
[2, 8, 4]. A measure-once quantum finite automaton is, formally, a quin-
tuple M = (Q, %, 0, qo, Qacc), Where the entries are as follows:

e () is a finite set of classical states. The machine will assume states in
the quantum system corresponding to the |@Q|-dimensional Hilbert space
H(Q) = C[Q)], the set of all C-linear combinations of elements of @ with an
inner product defined such that) is an orthonormal basis for the space.

e Y is a finite input alphabet, which we augment with a distinct end-of-tape
symbol § by defining the tape alphabet I' = ¥ U {$}.

e §:QxI'x@ — Cis a transition function. If the machine is in a superpo-
sition s € H(Q) and reads character o € I', the new state of the machine
will be produced by applying to s the linear transformation U, defined by
setting U, (q) = Zq’EQ 0(q,0,q")¢ for g € Q and extending linearly. Since
U, (s) must also be a valid quantum state, U, must be norm-preserving, or
unitary, for each o; this is equivalent to the requirement that the columns
of U,’s matrix representation with respect to the basis) be orthonormal

in H(Q).

e ¢o € (@ is the initial state of the machine; that is, M starts in a superpo-
sition given by the basis vector corresponding to qg.

® Qacc C Q is the set of classical accepting states, and we define Qrej =
Q \ Qacc to be the set of classical rejecting states. We can then see that
the subspaces H(Qacc) and H(Qrej) of H(Q) spanned by Qacc and Qye;
respectively are orthogonal to one another.

When we run M, we conceptualize it as having a read head moving along
a finite tape which contains the input word followed by the end-of-tape symbol
$. M Dbegins in the quantum superposition gg with its head pointing to the
first character of the input word and, for each symbol ¢ it reads, evolves its
superposition according to the operator U, defined by §, moving its head one
symbol along the tape in the process. After the end-of-tape character has been
read, we halt the machine and measure its state with respect to the observable
H(Q) = H(Qacc) ® H(Qrej)- Depending on the result of the measurement, we
either accept or reject the word.

Moore and Crutchfield also introduce a generalization wherein the initial
superposition need not correspond to any classical state, nor even have norm
1, and the operators U, need not be unitary; their terminology would suggest
the name “generalized quantum finite automata” for such machines. However,
the formalism is somewhat unclear since the authors never explicitly address
the problem of ensuring a valid probability distribution; throughout their work,
they seem to treat such machines as though they guarantee that their states have
projections onto the accepting space with magnitude in [0, 1], but never give any
restriction which would ensure this. For this reason, and because the loosened
restrictions make the machines no longer properly quantum-mechanical, we do
not treat them here, although Moore and Crutchfield demonstrated that they
are capable of recognizing the regular languages.

3.2 Quantum languages

One of the most immediately striking differences between the MO-QFAs and the
DFAs is that while the latter are deterministic, as their name would suggest,
the former are not. From our definition above, we can see that, unless a word
happens to send the initial state to a superposition contained entirely in either
H(Qace) or H(Qrej), it may be either accepted or rejected, each with some
positive probability. Therefore, it is no longer possible to speak naively of
the language recognized by a certain machine; more advanced definitions are
required.

Moore and Crutchfield solve this problem by generalizing the notion of a
language. They define a quantum language as a function f : ¥* — [0,1]
which, given an input word, assigns it some value corresponding to the proba-
bility that it is in the language. Within this framework, a classical language can
be identified with its characteristic function, which assigns every element in the
language a probability of 1 and every element not in the language a probability
of 0 [7]. The authors then define the quantum language accepted by a MO-QFA
M to be the function fj; which takes a word to the probability that M accepts
it, and designate the class of quantum languages accepted by some MO-QFA as

the “quantum regular languages”. Since we are dealing with a larger variety of
quantum finite automata, we will instead refer to these as the measure-once
quantum regular languages, or MO-QRLS, to avoid ambiguity.

Moore and Crutchfield proved a number of basic properties for the class of
MO-QRLs. In brief, for any fixed alphabet X, this class includes all constant
functions from ¥* to [0, 1] and is closed under the operations of taking weighted
averages, multiplication, and complementation (where the complement of a lan-
guage f is given by the function 1 — f). Moreover, if f is a measure-once
quantum regular language on X*, T is a finite alphabet, and ¢ : T* — ¥X* a
homomorphism, then the inverse image of f under ¢, defined as f o ¢, is a
measure-once quantum regular language on T*.

The authors also demonstrate an analogue to the pumping lemma for regular
languages, which, surprisingly, allows any subword of a word to be repeated
some number of times, although the allowed numbers of repetitions are much
more restricted than in the classical case. Specifically, if f : ¥* — [0, 1] is a MO-
QRL and w € X*, the properties of unitary matrices allow us to demonstrate
for any § > 0 the existence of some positive integer k such that |f(uw*v) —
f(uv)] < 6 for any u,v € ¥*. By applying this lemma to MO-QFAs which
take values in {0,1}, Moore and Crutchfield obtain constraints which imply
that there exist regular languages of which the characteristic functions are not
MO-QRLS. However, it is possible to show that, if a classical language L’s
characteristic function is a MO-QRL, L is regular [7].

3.3 Probabilistic recognition

Therefore, the set of classical languages which can be recognized with certainty
by MO-QFAs is a strict subset of the regular languages. This state of affairs
is unsatisfactory for a number of reasons. Since we have gone to the trouble of
incorporating quantum behavior into our automata, we would like to have some
sort of advantage to make it worth our while, but instead we seem to have made
our machines weaker. Moreover, since most of the MO-QFAs we can define
do not behave deterministically, this way of looking at the problem renders a
majority of our machines useless if we are interested solely in the recognition of
the classical languages.

Brodsky and Pippenger [3] attempted to resolve these issues by focusing on
the classical languages and using a relaxed definition of the language accepted by
an automaton common in the study of probabilistic automata. This definition
takes a probabilistic machine M with corresponding quantum language fj; to
accept a classical language L with cut-point A € (0, 1) exactly when fy(L) C
(A, 1] and far(LE) C [0, A]. If there exists a € > 0 such that fas(L) € (A +¢,1]
and fas(LY) C [0,\ — €), it is said that M accepts L with bounded error
and ¢ is called the margin [3].

Brodsky and Pippenger use these notions to define a number of language
classes relevant to MO-QFAs; as they note, the cut-point of a given automaton
can be modified as desired by a suitable alteration to the machine, so these
classes are not parameterized by A [3]. The authors define RMO to be the

10

class of all languages accepted by MO-QFAs with bounded error and UMO
the class of languages accepted by MO-QFAs with unbounded error, so that
RMO C UMO.

As it turns out, RMO is a strict subclass of the regular languages, and
in fact Brodsky and Pippenger were able to show that any language in RMO
can be accepted by a MO-QFA with transition function defined such that the
machine never exhibits quantum behavior by occupying a superposition involv-
ing multiple states, which is to say a MO-QFA which is also a DFA [3]. As
the authors note, this implies that, for any fixed § > 0, RMO is exactly the
class of languages accepted by MO-QFAs with margin at least §, yielding the
equivalence of these classes across all 4.

The intersection of the class of DFAs with the class of MO-QFAs is actually
set of classical machines known as the group automata, and so RMO is the
set of group languages accepted by these automata [3]. Since the quantum-
mechanical formalism is superfluous in this case, we will not examine these
languages in detail.

The class UMO is, in some sense, more promising. The authors were able
to demonstrate, by constructing a MO-QFA accepting the non-regular language
of words of {a,b}* which do not possess the same number of as as bs with
unbounded error, that this class is not a subset of the regular languages; inci-
dentally, this implies that RMO C UMO [3]. However, this result is not as
exciting as it might appear at first glance, since the lack of a bound on the error
for these machines means that there will be words both within and without
the language which are accepted with arbitrarily similar probabilities near the
cut-point; therefore, the automata will not be useful in practice for establishing
whether such words are in the language. It is apparent that a more powerful
formalism is needed.

4 MM-QFAs

A measure-once quantum finite automaton, true to its name, performs exactly
one observation in the process of reading any given input word, and this is the
most natural quantum analogue to a deterministic finite automaton in that,
in both cases, the machine’s state changes predictably when encountering any
particular input symbol and acceptance of a string is determined only by the
state after processing it fully.

However, when Kondacs and Watrous [6] approached the problem of defining
quantum analogues to the DFAs in 1997, slightly ahead of Moore and Crutch-
field, they did so in a way that led them to consider a different construction
altogether. Their work focused mainly on the so-called 2-QFAs, which corre-
spond in the classical case to generalized versions of DFAs which operate on a
circular tape and which, at every step, choose to move their read head forward,
backward, or not at all based on the input symbol and their internal state [6].
The 2-QFAs are defined by replacing both the internal state and the position of
the read head of such a machine with quantum superpositions, and the resulting

11

automata are, collectively, strictly more powerful that the DFAs in that they
are capable of recognizing all regular languages, as well as some non-regular
languages such as {a™b" | n > 1}, in linear time with bounded error [6].

Now, since the 2-way DFAs on which the 2-QFAs are based are equivalent
in power to the usual DFAs [6], it might seem as though the 2-QFAs are per-
fectly reasonable analogues to the DFAs, and that we have succeeded in our
quest to find a model for the QFAs which offers some advantage over classical
methods. However, as Ambainis and Freivalds pointed out in 1998, this con-
struction requires the dimension of the Hilbert space containing the machine’s
state vectors to become arbitrarily large as the input word does, since the num-
ber of possible positions for the read head depends on the word size, and so
it is not likely to be practically implementable in the foreseeable future, if at
all [1]. Therefore, scholarly attention has largely been focused on the machines
Kondacs and Watrous called 1-QFAs, which are defined as 2-QFAs which must
move forward along the input word at every step and which traverse the tape,
no longer taken to be circular, exactly once [6]; these have come to be known
as the measure-many quantum finite automata [3].

4.1 Definition

As before, while giving due credit to the machines’ original inventors, Kondacs
and Watrous [6], we choose to reproduce Brodsky and Pippenger’s more straight-
forward definition [3], with slight stylistic modifications. Formally speaking, a
measure-many quantum finite automaton is defined as a sextuple M =
(@Q,%,9, qo, Qacc, Qrej), Where the entries are as follows:

e (), as in the MO-QFA definition, is a finite set of classical states. As
before, we define H(Q) to be the associated Hilbert space.

e X is a finite input alphabet; we again add an end-of-tape symbol $ to
obtain the tape alphabet I' = ¥ LI {$}.

e §:QxI'x@ — Cis a transition function satisfying the same requirements
as in the MO-QFA case, and we define the transition matrices U, as before
as well.

e o € Q is, as in the MO-QFA case, the classical state the machine begins
in.

® Qace, Qrej € @ are disjoint sets containing the accepting and rejecting
classical states, respectively, of M. We also define the set of non-halting
states by Qnon = @ \ (Qacc U Qrej), and adopt the convention that gy €
QHOH'

As in the case of a MO-QFA, we take our tape to contain the input word
followed by the marker $ and begin with M’s read head on the first symbol of
the input word and M in superposition ¢gg. Also as in the measure-once case, our
machine responds to reading a symbol ¢ by evolving its internal superposition

12

according to the operator U, and, if possible, moving its read head forward.
The distinction is that, after every such transformation, the MM-QFA performs
a measurement with respect to the observable H(Q) = H(Quacc) D H(Quon) P
H(Qrej). If the observed value is acc, M halts and accepts; if rej, the machine
halts without accepting. Otherwise, the machine will continue to operate unless
the end of the tape has been reached, in which case it will halt without accepting
[6].

Having defined MM-QFAs, we are of course interested in knowing whether it
was worth the bother: that is, whether they are actually more powerful than the
MO-QFAs. This question was addressed in 1998 by Ambainis and Freivalds, who
concluded that MO-QFAs are strictly less powerful, in a terse note explaining
their decision to focus on MM-QFAs [1]. As they point out, it is not difficult
to simulate any MO-QFA exactly with an appropriately-constructed MM-QFA,
and they cite the non-empty finite languages as examples recognizable by MM-
QFAs but not MO-QFAs [1]. Therefore, we are justified in giving them further
consideration.

4.2 Associated language classes

As in the measure-once case, Brodsky and Pippenger defined RMM to be the
class of languages accepted by MM-QFAs with bounded error and UMM the
class with unbounded error. Moreover, they gave a family of subclasses RMM
parameterized by 6 > 0; RMMy is the class of languages accepted by MM-
QFAs with margin at least §, so that RMM = | J5., RMM; [3]. Although we
adopt their notation, we do so somewhat anachronistically; unlike Moore and
Crutchfield, who were interested in generalizing the idea of a language to that
of a quantum language and approached their machines through that lens [7],
Kondacs and Watrous worked in terms of bounded-error acceptance from the
beginning [6], so in the measure-many case there is a body of work related to
these language classes which predates Brodsky and Pippenger.

The first of these results, those due to Kondacs and Watrous themselves, are
not at all encouraging. Specifically, these authors proved that RMM is a subset
of the class of regular languages, and moreover they produced an example, the
language on {a, b} of words ending in a, of a language which is regular but not
recognizable with bounded error by a MM-QFA and thus demonstrates that the
containment is strict [6].

Therefore, we have again fallen short of the capabilities of the DFAs. How-
ever, for MM-QFAs the situation is not quite as dire as it was for MO-QFAs.
Whereas the set of MO-QFAs which are also classical machines are just as pow-
erful as the class of all MO-QFAs in terms of bounded-error recognition [3],
and the same is not true for MM-QFAs. Ambainis and Freivalds proved that,
although any MM-QFA which gives the correct answer with probability at least
7/9 can be simulated by a classical machine called a reversible finite automa-
ton, there exist languages which can be accepted by MM-QFAs with probability
of correctness over 0.65 and which cannot be recognized by reversible finite au-
tomata [1]. Since the reversible finite automata correspond to the MM-QFAs

13

which accept or reject deterministically and thus are classical [3], this demon-
strates that MM-QFAs have advantages over some classical analogues, if not the
DFAs.

Brodsky and Pippenger provided some additional results which shed light
on the properties of RMM. Specifically, they showed that this class is closed
under complement, inverse homomorphism, and another operation called word
quotient, demonstrated that it is not closed under homomorphism, and pro-
duced a necessary condition on a regular language’s minimal DFA for it to be
in RMM [3]. However, as they note, they were not able to reach a conclusion
regarding the closure properties of RMM and UMM with respect to Boolean
operations such as union and intersection.

5 Enhanced models

Although this invites further study of the theoretical properties of MM-QFAs, we
have already noted that they were known at their inception to be less powerful
than the DFAs, and in particular not to recognize the language of words ending
in a certain letter [6]. Therefore, we turn our attention to models which extend
the automata’s capabilities in some significant but reasonable way.

5.1 Multi-letter automata

In 2007, Belovs et al. proposed the idea of multi-letter automata, which
are similar to automata of the usual sort but, for some fixed k, have access
to the last k letters they have read at any given point (initially, the “letters”
other than the initial symbol of the word which are taken into account are all a
special empty-letter symbol A) [2]. Using this idea, they introduced the k-letter
deterministic finite automata, quantum finite automata, and group
finite automata, which they denoted DFAy, QFA, and GFAy respectively.
However, since their initial model of a quantum finite automaton was measure-
once [2], we instead adopt the notation MO-QFA and refer to the k-letter
measure-once quantum finite automata.

The authors show that the language given by the regular expression (aUb)*a,
to which we have previously referred on a number of occasions, can be recognized
by a GFA5 and so is within the reach of a MO-QFAy for any k& > 2. However,
the languages recognizable by MO-QFAys for any k are still a proper subset of
the regular languages, and in fact a regular language is recognizable by some
MO-QFA}, if and only if it does not contain the following construction: a pair
of distinct states ¢ and ¢’ and a pair of nonempty words ¢ and z such that
processing z takes both ¢ and ¢’ to ¢’ and processing t takes each state to itself
[2]. This construction is illustrated in Figure 2.

Belovs et al. demonstrated that the union of the classes of languages rec-
ognized by MO-QFAgs over all k£ > 1 is closed under intersection, union, and
complement, but not Kleene star or concatenation [2]. In 2009, Qiu and Yu
expanded on this analysis by observing that, for any k£ > 1, the MO-QFAs

14

—(
Figure 2: The forbidden construction of [2]

are strictly less powerful than the MO-QFA11s [8]. These authors also demon-
strated that the language a*b*, which can be recognized by a MM-QFA, is not
recognizable by a MO-QFAy, for any k; therefore, neither MM-QFAs nor MO-
QFA,s are strictly better, but, as Qiu and Yu also demonstrated, there exist
regular languages not recognizable by either [8].

Although Belovs et al. raise the possibility of defining the MM-QFAs [2],
neither they nor Qiu and Yu explore these machines’ properties.

5.2 Multihead automata

One of the most recent developments in the field is the introduction by Ganguly
et al. of multihead automata [4]. These machines are based on the MM-
QFAs and work in essentially the same way, but with important distinctions.
To begin with, they require a start-of-tape symbol ¢ as well as the end-of-tape
symbol $; although Kondacs and Watrous originally included such a symbol
as well [6], Brodsky and Pippenger showed that it was unnecessary [3], but no
such analysis has been performed in the multihead case. A more important
distinction is that the machine, per the name, has multiple input heads, each of
which can move to the right or remain stationary at every step [4]. To determine
how the heads should move, we measure the observable corresponding to the
state of the machine at every step, then move the heads according to the state
the machine collapses into [4]. Unlike in the traditional MM-QFA case, we have
no explicit rejecting states; instead, we halt whenever the next transition is not
defined, and accept based on whether we have ended up in an accepting state
[4].

Ganguly et al. were able to show that even 2-head quantum finite automata
are able to accept a variety of regular languages, as well as some non-regular
languages, even including an example which is not context-free [4]. However,
they have as of yet been unable to prove that this model accepts all regular
languages [4].

However, by observing with such exactness at each time step, this model
ceases to be properly quantum; instead it is simply probabilistic, since the
machine spends no meaningful time in any non-classical state. Moreover, it
involves more complication of our usual notion of an automaton than is ideal;
we would rather not have to add additional heads simply to define the quantum
version of a DFA.

15

6 Closing remarks

We have given a basic overview of the major models of quantum finite au-
tomata, including the measure-once and measure-many variants, explicated
their known capabilities, and examined two proposed extensions which yield
additional power. Many of these models are in need of further study, with ma-
jor unanswered questions about their computational power. However, as we
have seen, all of them except one which has a minimally important quantum
component are unable to recognize the regular languages with bounded error,
which makes them somewhat unexciting as objects of study.

Therefore, although it is somewhat beyond the scope of this survey, we
are unable to resist throwing our hat into the ring by defining as a candidate
for further study the notion of a repeating quantum finite automaton, or
RQFA, building upon the MM-QFAs of Kondacs and Watrous. The basic insight
is that, in addition to halting and accepting or rejecting, we allow the machine
to decide at any point that the computation has failed and restart it from the
beginning. This will allow us to sink excess information into “junk states” at
the high cost of the computation time added by the possibility of repetition.

Formally, we define a RQFA as a septuple M = (Q, %, 8, g0, Qacc; Qrejs Qjun)>
where the entries are as follows:

e () is the finite set of classical states; we define H(Q) as before.

e Y is the finite input alphabet; as before, we let I' = ¥ LI {$} be the tape
alphabet.

0:Q xTI'x @ — C is the transition function. As usual, we require that
the associated matrices U, be unitary.

qo € @ is the classical start state.

Qacc, @rej, Qjun € @ are the accepting, rejecting, and junk states of
M respectively. These are required to be disjoint, and we define the non-
halting states by Qnon = Q\ (QaccUQrejLUQjun). The associated subspaces
of H(Q) are defined as usual. We require that ¢y € Qnon and that, for
any input word w, there is a non-zero probability that the machine halts
without repeating the computation when processing w.

Then M operates by beginning in superposition gy with the input word
on the tape followed by $ and the read head pointing to the input word’s first
letter. For each symbol o € T that it reads, M evolves its internal superposition
according to U, and then measures the observable H(Q) = H(Qacc) ® H(Qrej) ®
H(Qjun) ® H(Qnon). If the result is acc, it halts and accepts. If rej, it halts
without accepting. If jun, M returns to its initial configuration and starts over
entirely. Finally, if non is observed, the machine either moves its read head
along the tape and continues or, if that is not possible, halts without accepting.

Our last condition on M makes the probability that it will loop forever negli-
gible, since as we increase the number of repetitions to infinity the probability of

16

nontermination will tend exponentially to 0. However, although this condition
will be clear in the example we define, it is not intuitively obvious how easily it
might be checked for an arbitrary proposed RQFA, which is one of this model’s
major limitations.

However, it is possible to recognize the regular languages without any error
using these machines. Suppose we have a DFA M = (S, 3,7, go, A) and define a
RQFA M’ = (Q,%,7, q0,{a}, 0, Qjun) to simulate it as follows. Let qo, ..., ¢n—1
be an enumeration of the elements of S and, for each pair i # j € {0,1,...,n—
1}, define a state ry; ;3 which is indexed by both elements irrespective of order.
Let Qjun = {rgijy |1 #J€{0,1,...,n—1}} and @ = SU{a}UQjun. Moreover,
define ¢’ such that, for each o € X, the transition matrix U, is as follows.

Define ¢: {0,1,...,n —1}?> — C by

~1 ifi<j
c(i,j) =40 ifi=j
1 ifi>j

and, for each ¢ € Q, let K,(q) ={j € {0,1,...,n—1} | §(¢j,0) = q}. Then we
will require for each 0 <7 < n that

1

Uol9:) =\ TR (@]

6(qi,0) + Z (i, J)rgi i
JEK o (8(qi,0))\{i}

Although this formula is somewhat involved, its basic justification is that it finds
a way to respect the original transition function § while using the junk states to
keep the columns of U, corresponding to S orthonormal; each ry; ;3 provides an
interaction term that we can use to enforce orthogonality between the outputs
at any states whose indices are in the same class K,(g). Since the vectors to
which elements of S are mapped are orthonormal, we can obtain an orthonormal
basis for H(Q) which contains all of them; we conclude our definition of U, by
assigning the other basis vectors arbitrarily to inputs from @ \ S.

Therefore, the U, are unitary, and, if we extend our definition of § to a
function from I" to S U {a} by

a ifge A
0(q,8) = ,
(4,8) {q ifge S\ A

the same methodology gives us a unitary transition matrix Us.

We can see that the machine M’ will, with nonzero probability, model ex-
actly the transitions followed by M with the same input word and then, when
it encounters $, either accept or reject as M would with some nonzero prob-
ability and redo the computation otherwise. Therefore, each repetition of the
computation will have nonzero probability of interpreting the input word cor-
rectly, and we can see that it will always simply start from the beginning again
if it does not. Therefore, as the number of repetitions increases to infinity, the

17

probability that M’ has not terminated with the correct answer tends to zero
exponentially, so the machine will eventually terminate and accept or reject the
word correctly.

However, some basic reasoning about the infinite sums involved, here elided,

tells us that the expected number of repetitions required is in the worst case
exponential in the length of the input word, so it is unclear how useful these
automata would be in practice. However, they do provide a simple quantum
analogue to the DFAs capable of recognizing the regular languages, so we believe
them to be deserving of further inquiry.

References

1]

A. Ambainis, R. Freivalds, One-way quantum finite automata: Strengths,
weaknesses and generalizations, in: Proceedings of the 39th Annual Sympo-
sium on Foundations of Computer Science, IEEE Computer Society Press,
Palo Alto, CA, USA, 1998, pp. 332-341. Also quant-ph/9802062, 1998.

Belovs A., Rosmanis A., Smotrovs J. (2007) Multi-letter Reversible and
Quantum Finite Automata. In: Harju T., Karhumki J., Lepist A. (eds)
Developments in Language Theory. DLT 2007. Lecture Notes in Computer
Science, vol 4588. Springer, Berlin, Heidelberg.

A. Brodsky, N. Pippenger, Characterizations of 1-way quantum finite au-
tomata, STAM Journal on Computing 31(5) (2002) 1456-1478. Also Tech-
nical Report TR-99-03, University of British Columbia, 1999.

D. Ganguly, K. Chatterjee, K.S. Ray, 1-Way Multihead Quantum Finite
State Automata, Applied Mathematics 7 (2016) 1005-1022.

L.K. Grover, A fast quantum mechanical algorithm for database search, in:
Proceedings of the 28th Annual ACM Symposium on Theory of Computing,
Philadelphia, PA, USA, 1996, pp. 212-219.

A. Kondacs, J. Watrous, On the Power of Quantum Finite State Automata,
Proceedings of the 38th IEEE Conference on Foundations of Computer
Science (1997) 66-75.

C. Moore, J. Crutchfield, Quantum automata and quantum grammars,
Theoretical Computer Science 237 (1-2) (2000) 275-306. Also Santa Fe In-
stitute Working Paper 97-07-062, 1997.

D. Qiu, S. Yu, Hierarchy and equivalence of multi-letter quantum finite
automata, Theoretical Computer Science 410 (2009) 3006-3017.

E. Rich, Automata, Computability, and Complexity: Theory and Applica-
tions, Pearson Prentice Hall (2008).

B. Schumacher, Quantum coding, Physical Review A 51(4) (1995) 2738-
2747.

18

[11] P.W. Shor, Algorithms for quantum computation: discrete logarithms and
factoring, Proc. 35th Symp. on Foundations of Computer Science, 1994,
pp. 124-134.

19

