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Introduction

The goal of this thesis is the examination of recent results by István Tomon
on the possibility of obtaining chain partitions of the Boolean lattice with
certain desirable properties. Specifically, we explore Tomon’s refinements to
the previously known asymptotic approximations of the Füredi partition [21]
and his improvements on the bounds of Lonc and Elzobi [4] for the smallest
Boolean lattice with a partition into chains of some specified size [22]. For
the reader unfamiliar with such terminology, we provide an overview of the
background material necessary to understand Tomon’s results.

The questions Tomon’s work tries to answer largely concern finite sets.
Sets in general are among the most basic foundational objects in modern
mathematics, making up the basis for the widely-used Zermelo-Fraenkel ax-
iom system. Intuitively, they may be thought of as collections of distinct ele-
ments; for example, {1, 2, 3, 4} is a set with four members, as is {♣,♦,♠,♥}.

In spite of the relative simplicity with which they may be described,
these objects have many surprising properties; for example, the result that
the set of positive integers has, in some sense, the same ‘number’ of elements
as the seemingly much larger set of all integers, although familiar to most
mathematicians, is generally counterintuitive when one first encounters it.

Indeed, the theory of infinite sets is famously riddled with startling twists
and subversions of expectation, from Russell’s paradox to the Banach-Tarski
theorem. By comparison, the study of finite sets may seem, at first blush, to
be incredibly simple, even to the point of triviality. However, this is far from
accurate.

As an example of a property of these sets which is not yet well-understood,
consider the four-element set {1, 2, 3, 4}. It is fairly straightforward to list its
subsets; these are ∅, {1}, {2}, {3}, {4}, {1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4},
{3, 4}, {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}, and {1, 2, 3, 4} itself, where ∅
denotes the set with no elements. If we so choose, we can draw these in such
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∅

{1} {2} {3} {4}

{1, 2} {1, 3} {1, 4} {2, 3} {2, 4} {3, 4}

{1, 2, 3} {1, 2, 4} {1, 3, 4} {2, 3, 4}

{1, 2, 3, 4}

Figure 1: An illustration of the relationships between the subsets of
{1, 2, 3, 4}.

a way that the subset relationships among them are more readily apparent,
as depicted in Figure 1.

Suppose we want to write these subsets down in a way that preserves
some of the information about their relations to one another without being
as cumbersome as a diagram such as Figure 1. Then one option would be
something like this: ∅ ⊂ {1} ⊂ {1, 2} ⊂ {1, 2, 3} ⊂ {1, 2, 3, 4}, {2} ⊂
{2, 3} ⊂ {2, 3, 4}, {3} ⊂ {3, 4} ⊂ {1, 3, 4}, {4} ⊂ {1, 4} ⊂ {1, 2, 4}, {1, 3},
and {2, 4}.

In listing these ‘chains’ of related subsets, we certainly do not convey ev-
erything which can be said about them; for example, very little about {1, 3}
and {2, 4} is readily apparent. On the other hand, we get a lot more infor-
mation at a glance than we did from our first list of subsets; the connections
which this new list does express can be seen in Figure 2.

Now, it is clear that the way we have written out our chains is not the
only way we could have done so; for example, we might have used ∅ ⊂
{2} ⊂ {2, 3} ⊂ {2, 3, 4} ⊂ {1, 2, 3, 4} and {1} ⊂ {1, 2} ⊂ {1, 2, 3} instead of
∅ ⊂ {1} ⊂ {1, 2} ⊂ {1, 2, 3} ⊂ {1, 2, 3, 4} and {2} ⊂ {2, 3} ⊂ {2, 3, 4}.

Less frivolously, were we dissatisfied with the lack of information about
{1, 3} and {2, 4}, we could write our subsets thus: ∅ ⊂ {1} ⊂ {1, 3}, {1, 2} ⊂
{1, 2, 3} ⊂ {1, 2, 3, 4}, {3} ⊂ {3, 4} ⊂ {1, 3, 4}, {4} ⊂ {1, 4} ⊂ {1, 2, 4},
{2} ⊂ {2, 3}, and {2, 4} ⊂ {2, 3, 4}. Figure 3 depicts the corresponding
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∅

{1} {2} {3} {4}

{1, 2} {1, 3} {1, 4} {2, 3} {2, 4} {3, 4}

{1, 2, 3} {1, 2, 4} {1, 3, 4} {2, 3, 4}

{1, 2, 3, 4}

Figure 2: The connections apparent in our list of chains.

diagram.

The primary difference between these two lists of chains is the number of
subsets included in each chain; the first has one chain with 5 subsets, three
with 3, and two with 1, while the second has four with 3 and two with 2.
This naturally raises the question of what sizes are possible. That is, given a
list of positive integers summing to 16, the number of subsets of {1, 2, 3, 4},
can we group the subsets of the set into chains so that the given integers are
the sizes of the chains?

Given the small size of {1, 2, 3, 4}, it is not terribly difficult to answer
this question by brute force for any given list of positive integers. As we
ask its equivalent for the subsets of larger sets, however, such computations
become prohibitively expensive, and no general method of determining the
answer without performing them is known. The goal of this thesis, as we
have mentioned, is to examine some recent results of István Tomon in the
study of this question.

The groundwork for many of the later explorations in this area was laid
in the early- and mid-twentieth century by the mathematicians Emanuel
Sperner [19] and Robert P. Dilworth [3], and the first result concerning our
question in particular, which answered it in the affirmative for a specific list
of sizes with a certain maximality property, was published independently by
at least two authors, Kleitman [15] and Hansel [10], in the 1960s. The next
step forward came in 1985 with the conjectures of Füredi [5] and Sands [18].
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∅

{1} {2} {3} {4}

{1, 2} {1, 3} {1, 4} {2, 3} {2, 4} {3, 4}

{1, 2, 3} {1, 2, 4} {1, 3, 4} {2, 3, 4}

{1, 2, 3, 4}

Figure 3: A different list of chains.

The Füredi conjecture, which remains open as of this writing, states that
the subsets of a finite set can be broken down into a list of chains of the type
we have been discussing such that the number of separate chains is minimal
and the numbers of subsets in the chains differ pairwise by at most one.
Recent progress on this conjecture has been made by Hsu, Logan, Shahriari,
and Towse, who, in 2002, proved the possibility of obtaining a list with the
minimum number of separate chains and some lower bound on the number
of subsets in each chain [12] and, in 2003, expanded on this by developing a
different method yielding both lower and upper bounds [13]. Hsu, Logan, and
Shahriari also went on to prove an analogue of the conjecture for subspaces of
certain finite-dimensional vector spaces in 2006 [14]. Most recently, in 2015,
Tomon has created new methods which allow these bounds to be refined [21];
we shall examine these results later on.

The Sands conjecture, like the Füredi, concerns the possibility of writing
chain lists with sizes satisfying some standard of uniformity. Specifically, it
states that, for any positive integer power of 2, say 2m, there is a natural
number so large that the subsets of any set of equal or greater size can be
arranged in chains in such a way that each chain contains exactly 2m subsets.
This conjecture was generalized in 1988 by Pomona College alumnus Jerrold
Griggs [9] to allow any positive integer c in the place of 2m, with the natural
stipulation that one of the chains be allowed to differ in size to account for
the possibility that c does not divide the number of subsets of any finite



vii

set. Shortly thereafter, in 1991, this generalized version of the conjecture
was proven by Zbigniew Lonc [17], who went on to provide an explicit upper
bound for the set size needed together with his student Muktar Elzobi in
2003 [4].

Although the generalized Sands conjecture has been proven, however,
the upper bound on the size needed provided by Elzobi and Lonc appears to
be a radical overestimate; for example, an earlier work of Griggs, Yeh, and
Grinstead [8] established that the size needed for c = 4 is 9, many orders of
magnitude smaller than 22576 , the given upper bound. Therefore, obtaining
estimates of the smallest size satisfying the conjecture remains an open area
of inquiry. We shall examine some recent results of Tomon [22] which improve
on the known upper bounds.

Three years after these conjectures arose, in 1988, Griggs proposed an-
other [9], which generalizes that of Füredi and, if true, would dramatically
simplify the task of improving on the bounds given by Elzobi and Lonc. This
conjecture purports to give an exact characterization of whether it is possi-
ble to obtain a realization in chains of a given list of integers based upon an
easily-checked property of that list. Although we will not cover the Griggs
conjecture in detail, any reader with an interest in the topics we explore is
encouraged to seek out and become acquainted with its formal statement.

The structure of the thesis is as follows. Chapter 1 introduces the basic
concepts underlying the study of the Boolean lattice; the reader already
familiar with the theory of normalized matching posets should be able to
skip directly to Chapter 2, which formally introduces the Füredi conjecture
and discusses Tomon’s results [21] on the subject. Similarly, Chapter 3 gives
the full statements of Sands’ conjecture and Lonc’s theorem before delving
into Tomon’s refined bounds [22]. Finally, Chapter 4 closes with a discussion
of the results and some possible directions for future research.



viii INTRODUCTION



Chapter 1

Preliminaries

Although we have already touched upon most of the basic concepts to be
used in the results we will discuss, we have done so informally, with an eye
to giving the reader a broad overview of the terrain to be covered. Here, we
will pursue the ideas we need in greater depth, laying the groundwork for
more rigorous discussion.

1.1 An introduction to posets

Previously, we considered the set of all subsets of {1, 2, 3, 4}, with a particular
interest in which of them were subsets of others. This endowed the set of
subsets with a kind of structure, which we illustrated in Figure 1. As it turns
out, the precise properties of this type of structure can be formalized.

Definition 1.1 Let P be a set and ≤ a relation on the elements of P . Then
we say that ≤ is a partial order if it satisfies the following three properties:

Reflexivity: x ≤ x for all x ∈ P

Transitivity: x ≤ y and y ≤ z together imply x ≤ z for all x, y, z ∈ P

Antisymmetry: x ≤ y and y ≤ x together imply x = y for all x, y ∈ P

The pair (P,≤) is called a partially ordered set, or poset for short; in
practice, the relation ≤ is often understood from context, and in these cases
we refer to our poset simply as P .

1



2 CHAPTER 1. PRELIMINARIES

Intuitively, we can understand these three properties by thinking of the
usual ordering relation, uncoincidentally denoted ≤, on the real numbers.
Through contemplation of this example, one can reasonably convince oneself
that each of them is a fairly natural requirement for any relation which might
plausibly be considered an ordering.

However, there is an important difference between a general poset and
the set of real numbers. Specifically, our definition for a poset made no
stipulation that every pair of elements be related in some way; whereas any
pair of distinct real numbers has one element which is smaller than the other,
in the case of a general poset it is entirely possible to have two distinct
elements such that neither is less than the other. For example, in the inclusion
relation ⊆ on the subsets of {1, 2, 3, 4} which we have been discussing, {1, 2}
and {3, 4} are incomparable, since neither is a subset of the other. This
possibility of incomparability is why such orders are called partial.

Although the interplay between partially ordered and so-called totally
ordered sets such as the reals will be of interest to us later on, we focus for
now on posets in and of themselves. In order to give the reader a concrete
example to consider, and to make rigorous the notions which we have already
discussed informally, we introduce the following paradigmatic poset.

Example 1.2 Let n be an element of the set N of positive integers. Then
we denote by [n] the finite set {1, 2, . . . , n}. Let 2[n] be the set of subsets of
[n] and ⊆ the relation given by

A ⊆ B ⇔ B contains all elements of A.

Then (2[n],⊆) is a partially ordered set, which we refer to as the Boolean
lattice on n elements. As with other posets, we will usually write only 2[n],
leaving ⊆ understood.

We have already examined 2[4] in detail; 2[1], 2[2], and 2[3] are depicted
in Figures 1.1, 1.2, and 1.3 respectively. Note that, in the method of il-
lustration we are using, called a Hasse diagram after the mathematician
Helmut Hasse, we do not draw edges between all pairs of related vertices,
instead relying on the reader’s understanding that the relation is transitive
to encapsulate the relationships between elements without visual clutter.

Keeping this family of examples in mind, we can now examine some basic
properties of posets and additional definitions. We begin with a notion of
what it means for two posets to be ‘the same.’
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∅

{1}

Figure 1.1: The Boolean lattice 2[1].

∅

{1} {2}

{1, 2}

Figure 1.2: The Boolean lattice 2[2].

∅

{1} {2} {3}

{1, 2} {1, 3} {2, 3}

{1, 2, 3}

Figure 1.3: The Boolean lattice 2[3].
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Definition 1.3 Let (P,≤P ) and (Q,≤Q) be posets. Then we write P ∼= Q
(or, more formally, (P,≤P ) ∼= (Q,≤Q)) if there exists an invertible function
φ : P → Q such that, for any a, b ∈ P ,

a ≤P b ⇔ φ(a) ≤Q φ(b).

This corresponds to the intuitive notion that P and Q ought to be con-
sidered the same if they have the same structure up to some relabeling of
their elements. In order to produce an example of this idea in action, we also
introduce the following definition.

Definition 1.4 Let P be a poset with relation ≤. Then the dual P ∗ of P
is the poset (P,≤∗), where, for all a, b ∈ P ,

a ≤∗ b ⇔ b ≤ a.

That is, P ’s dual has all of the same elements as P , and the relationships
between them are precisely those obtained by reversing the relationships in
P .

Note that this definition, strictly speaking, requires a proof of correct-
ness. Specifically, we ought to show that the relation ≤∗ which we defined
satisfies the definition of a partial order. However, since this proof is rela-
tively straightforward, we elide it and proceed to the following result, which
illustrates the concepts we have introduced thus far.

Proposition 1.5 Let n be a positive integer. Then 2[n] ∼= (2[n])∗. That is,
the Boolean lattices are self-dual.

Intuitively, this fact can be seen in the vertical symmetry of the Boolean
lattice diagrams we have drawn thus far, such as Figure 1.3. Although we
will not pursue the proof in detail, we note that it begins by identifying each
subset A of [n] with its complement [n] \ A = {k ∈ [n] | k 6∈ A}; interested
readers are invited to work through the remaining details on their own.

Another fundamental notion is that of a subposet.

Definition 1.6 Let P be a poset with the relation ≤ and Q a subset of P .
Then Q is a poset with the restriction of ≤ to elements of Q; we call this the
induced subposet of P on Q.
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∅

{1} {2} {3}

{1, 2} {2, 3}

{1, 2, 3}

Figure 1.4: A subposet of 2[3].

Although the terminology is somewhat long-winded, the basic concept is
intuitive; if we wish to consider, for example, all subsets of [3] other than
{1, 3}, it is still perfectly reasonable to think of the subset relationships
between them, and this will indeed define a poset, which is illustrated in
Figure 1.4.

Observe that, for any n ∈ N, [n] ⊆ [n + 1] and so every subset of [n] is
also a subset of [n + 1]. Therefore, we can view 2[n] as a subposet of 2[n+1]

and, in fact, of 2[m] for any m ≥ n. However, more is true; this result can be
strengthened using the notion of the product of two posets.

Definition 1.7 Let (P,≤P ) and (Q,≤Q) be posets. Then the Cartesian
product P ×Q is a poset, called simply the product of P and Q, with the
relation ≤P×Q given by

(p1, q1) ≤P×Q (p2, q2) ⇔ p1 ≤P p2 and q1 ≤Q q2.

We can now state precisely the relationship between 2[n] and 2[n+1].

Proposition 1.8 Let n be a positive integer. Then 2[n+1] ∼= 2[n] × 2[1].

The essential concept of the proof of this fact is that we identify the
elements of 2[n]×{∅} with subsets of [n+ 1] which do not contain n+ 1 and
the elements of 2[n] × {[1]} with those which do; from here, it is a simple
matter of verifying that the product relation is precisely the usual inclusion
ordering. Figure 1.5 illustrates this correspondence for n = 2.

Thus 2[n] is equivalent to the nth Cartesian power (2[1])n of 2[1] and, in
fact, since 2[1] is equivalent to [2] with the usual ordering on the integers, we
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∅

{1} {2} {3}

{1, 2} {1, 3} {2, 3}

{1, 2, 3}

(∅, ∅)

({1}, ∅) ({2}, ∅) (∅, {1})

({1, 2}, ∅) ({1}, {1}) ({2}, {1})

({1, 2}, {1})

Figure 1.5: The Boolean lattice 2[3], labeled both in the usual fashion and as
the product 2[2] × 2[1].

can see that 2[n] ∼= [2]n. This way of looking at the Boolean lattice situates
it within a larger class of posets, which will be useful to us later on.

Definition 1.9 Let d be a positive integer. Then, if k1, k2, . . . , kd are also
positive integers, we say that the product poset [k1]× [k2]× . . .× [kd], where
each [ki] has the usual ordering of its elements as integers, is a d-dimensional
grid.

One possible 2-dimensional grid is depicted in Figure 1.6. Note that,
under this definition, the Boolean lattice 2[n] ∼= [2]n is simply one example of
an n-dimensional grid; Figure 1.7 depicts 2[3] as the grid [2]3.

(1, 1)

(2, 1) (1, 2)

(3, 1) (2, 2)

(3, 2)

Figure 1.6: The 2-dimensional grid [3]× [2].
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∅

{1} {2} {3}

{1, 2} {1, 3} {2, 3}

{1, 2, 3}

(1, 1, 1)

(2, 1, 1) (1, 2, 1) (1, 1, 2)

(2, 2, 1) (2, 1, 2) (1, 2, 2)

(2, 2, 2)

Figure 1.7: The Boolean lattice 2[3] and the 3-dimensional grid [2]3.

1.2 Chains and antichains

Posets, even those, such as the Boolean lattice, which have a nice charac-
terization in terms of simpler objects, can have quite complicated structures
which are difficult to reason about effectively. Therefore, it is often to our ad-
vantage to focus on simple substructures which will make it easier to reason
about the poset as a whole.

1.2.1 Chains and ranked posets

The first of these which we will examine hearkens back to our earlier dis-
cussions of what makes a partial order ‘partial’ — namely, the possibility of
pairwise incomparable elements. At that time, we noted that the set of real
numbers is not a prototypical example of a poset precisely because it lacks
such pairs of elements. As it turns out, posets with this property have two
names, both of which may be somewhat unsurprising to the reader.

Definition 1.10 Let P be a poset. Then, if, for every a, b ∈ P , at least one
of a ≤ b and b ≤ a is true, we say that P is totally ordered, or a chain.
The latter term is used most often, although not exclusively, when we are
considering P as a subposet of some larger poset Q.

Using this definition, we can now express our earlier concept of a grid
more simply; specifically, we can define a d-dimensional grid as any product
of d finite chains. In addition, we can formalize our previous discussion of
writing 2[4] as a ‘list of chains’.
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(1, 1)

(2, 1) (1, 2)

(3, 1) (2, 2)

(3, 2)

Figure 1.8: A chain in [3]× [2], highlighted in orange.

Definition 1.11 Let P be a poset. Then a chain partition of P is a
collection of subsets of P such that:

• Each subset is a chain.

• The subsets are pairwise disjoint.

• The union of all the subsets is P itself.

As we have noted, the primary goal of our work will be to examine the
possibility of obtaining chain partitions of the Boolean lattice with certain
specified chain sizes.

However, this is far from the only reason we have to concern ourselves
with chains; these objects have a range of useful applications which allow us
to better understand the structure inherent in the posets we will be working
with. To examine one of the most powerful of these, we will need a notion
of maximality for chains which are contained in larger posets.

Definition 1.12 Let P be a poset, and M ⊆ P a chain. Then we say that
M is maximal if there is no element of P \ M which is related to every
element of M ; that is, it is not possible to include any additional element in
M without losing its total ordering.

For example, the chain depicted in Figure 1.8 is maximal, since each of
the elements outside it is incomparable to an element within it.

We can now examine the properties of a poset’s maximal chains in the
hope that this will allow us to get some idea of its internal structure. It
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turns out that, in many important instances, this is the case; that is, there
are many interesting and widely-studied posets which satisfy the following
property.

Definition 1.13 Let P be a finite, nonempty poset. Then we say that P
is ranked if all of its maximal chains contain the same number of elements.
Since P is nonempty, this number of elements will be equal to `+ 1 for some
nonnegative integer `; we say that ` is the rank of P .

In a ranked poset, the uniformity of the maximal chain sizes allows us
to classify the poset’s elements using their positions on the maximal chains
containing them.

Definition 1.14 Let P be a ranked poset and consider x ∈ P . Then the
rank of x, which we denote rk(x), is the number of elements strictly below
x on any maximal chain which contains it.

This notion of rank for an element, rather than a poset, is not, at its
face, clearly well-defined. To convince ourselves that it is, we must observe
that, were x a member of two different maximal chains C1 and C2 such that
the sets B1 = {b ∈ C1 | b < x} and B2 = {b ∈ C2 | b < x} contained
differing numbers of elements, say |B1| > |B2|, we could construct a chain
B1 ∪ (C2 \B2) with more elements than either of the maximal chains C1 and
C2. Since it is not difficult to construct a maximal chain containing any given
chain in a finite poset, this would contradict the uniformity of the sizes of
P ’s maximal chains, so our definition for rank is well-formed.

Having developed this classification for the elements of a ranked poset, it
is natural to talk about the set of all elements sharing a given rank, which
we call a level of the poset.

Definition 1.15 Let P be a poset of rank n. Then, for any integer 0 ≤ i ≤
n, we say that the set Ai = {x ∈ P | rk(x) = i} is the ith level of P . We
call the level sizes |A0|, |A1|, . . . , |An| the rank numbers of P .

As an example of these concepts at work, we return to the 2-dimensional
grid [3]× [2] which we considered earlier in Figures 1.6 and 1.8.

Example 1.16 Let P = [3] × [2]. Then P is a rank-3 poset with rank
numbers 1, 2, 2, 1 and respective levels A0 = {(1, 1)}, A1 = {(2, 1), (1, 2)},
A2 = {(3, 1), (2, 2)}, and A3 = {(3, 2)}.
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As one might expect, it is far from a coincidence that [3]× [2] is ranked.
In fact, it is not terribly difficult to show that any grid has this property.

Proposition 1.17 Let d be a positive integer and P = [k1] × . . . × [kd] a
d-dimensional grid. Then P is a ranked poset with rank function given by

rk(x1, . . . , xd) =
d∑
i=1

(xi − 1).

In particular, since we can see from the definitions that the rank of a
poset will be the maximum of the ranks of its elements, the rank of P will
be
∑d

i=1(ki − 1).

This is to say that the rank of an element x = (x1, . . . , xd) is the number
of steps it takes, moving one unit in one of the coordinate directions at a
time, to reach x from (1, 1, . . . , 1), the lowest point in the grid. Since we are
particularly interested in Boolean lattices, we specialize this result as follows.

Corollary 1.18 Let n be a positive integer. Then 2[n] is a ranked poset
such that, for every A ⊆ [n], rk(A) = |A|, the number of elements in A. In
particular, the rank of the entire poset is n and, for every integer 0 ≤ i ≤ n,
the size of the poset’s ith level is

(
n
i

)
= n!

i!(n−i)! .

This follows from our identification of 2[n] with [2]n; note that the formula
for the rank is correct because our representation x of a subset A ⊆ [n] is such
that the ith coordinate of x is 2 instead of 1 if and only if i ∈ A. The result
concerning the rank numbers is immediate from this because the number of
i-element subsets of a set with n elements is

(
n
i

)
.

Understanding a poset’s rank numbers allows us to get a sense for its
general shape. It is sometimes useful, for example, to consider posets which,
without necessarily being self-dual, satisfy a less stringent symmetry con-
straint.

Definition 1.19 Let P be a ranked poset with levels A0, A1, . . . , An. Then
we say that P is rank-symmetric if, for every integer 0 ≤ i ≤ n, |Ai| =
|An−i|.

This is to say that the bottom level contains the same number of ele-
ments as the top level, the first level above the bottom the same number
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as the first below the top, and so forth. Note that, since the Boolean lat-
tices are self-dual, they necessarily satisfy the rank-symmetry condition as
well. An argument similar to the one used to prove the result in the case of
the Boolean lattices also demonstrates that any grid is self-dual and hence
rank-symmetric.

Another important property which the shape of a ranked poset may pos-
sess is unimodality.

Definition 1.20 Let a0, a1, . . . , an be a finite sequence of real numbers.
Then we say that this sequence is unimodal if there exists some integer
index 0 ≤ r ≤ n such that

a0 ≤ a1 ≤ . . . ≤ ar−1 ≤ ar ≥ ar+1 ≥ ar+2 ≥ . . . ≥ an;

that is, the sequence is strictly non-decreasing up to index r, after which it
is strictly non-increasing instead.

Let P be a ranked poset with levels A0, A1, . . . , An. Then we say that P
is unimodal if its sequence |A0|, |A1|, . . . , |An| of rank numbers is.

Intuitively, we generally think of a unimodal poset as one which ‘bulges’
in the middle and tapers toward the top and bottom. It should be noted,
however, that there are some cases not captured by this intuition; for exam-
ple, it might be that the largest level Ar is at the top or bottom, or that
all the inequalities in our definition are actually equalities and hence every
level of our poset is the same size. In such cases, the mental picture we have
painted will not be entirely accurate, but it is still generally useful to keep
in mind.

Every grid, including the Boolean lattices, which we have examined thus
far has been unimodal. The following result generalizes this.

Proposition 1.21 Let d be a positive integer and P a d-dimensional grid.
Then P is unimodal.

The reader may have an intuitive sense that the binomial coefficients(
n
0

)
,
(
n
1

)
, . . . ,

(
n
n

)
for any fixed n, and hence the Boolean lattices 2[n], are uni-

modal. Indeed, it is not terribly difficult to prove this by induction on n if
one makes use of the recursive formula

(
n
i

)
=
(
n−1
i−1

)
+
(
n−1
i

)
and the identity(

n
i

)
=
(
n
n−i

)
, and the interested reader is invited to work through the details.

In the case of a general grid, the recursive formula for the rank numbers is
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more involved and the argument correspondingly more difficult, although not
impossible. In the interest of concision, we will not go into the details; for the
unsatisfied, a proof using an alternate approach can be found in Anderson’s
Combinatorics of Finite Sets [1].

Note that the definition of a poset’s unimodality is dependent on the
index r of some level of maximum size. Since we are interested in the Boolean
lattices, we retrieve this parameter for such posets.

Proposition 1.22 Let n be a positive integer. Then the only levels of max-
imum size in 2[n] are the bn/2cth and dn/2eth.

Here bxc for a real number x denotes the floor of x, which is defined to
be the largest integer which is less than or equal to x. Similarly, dxe, the
ceiling of x, is the least integer no smaller than x. Note that, in the case
where n is even, we will have bn/2c = n/2 = dn/2e, so there will be only one
level of maximum size.

This result can be demonstrated by a modification of our earlier inductive
argument, but the details are tiresome. A simpler approach is to use the
formula

(
n
i

)
= n!

i!(n−i)! to consider the ratios of successive binomial coefficients.
Indeed, this method actually provides an easier proof of the Boolean lattice’s
unimodality as well; however, it does not generalize to the case of an arbitrary
grid as naturally as the inductive argument.

1.2.2 Antichains and width

Consider one of the levels, say the ith, of the Boolean lattice 2[n]. As we have
seen, this level contains precisely those subsets of [n] which have exactly i
elements. From this, it is apparent that no two distinct subsets on the level
are comparable; were one a subset of another, it would have to be strictly
smaller, violating the supposition that all have exactly i elements. There is
a name for a poset or subposet with this property.

Definition 1.23 Let P be a poset such that no two elements of P are com-
parable to one another. Then P is called an antichain.

As we have noted, any level of a Boolean lattice is an antichain. In fact,
this result holds for a ranked poset in general.

Proposition 1.24 Let P be a ranked poset with levels A0, A1, . . . , An. Then
each Ai is an antichain in P .
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∅

{1} {2} {3}

{1, 2} {1, 3} {2, 3}

{1, 2, 3}

Figure 1.9: An antichain in 2[3], highlighted in green.

Proof Suppose toward a contradiction that there exists i ∈ {0, 1, . . . , n}
such that, for some x, y ∈ Ai, x < y. Since P is finite, we can construct
a maximal chain M which contains all the elements in the chain {x, y} by
repeatedly adding in an element comparable to everything in our chain until
no such element can be found. Since x < y and the transitivity of ≤ implies
that every element of M strictly less than x will also be strictly less than y,
this tells us that the rank of x is strictly less than that of y. However, this
contradicts our hypothesis that rk(x) = rk(y) = i.

However, the significance of antichains is not restricted to ranked posets
alone. Indeed, one of the most fundamental properties of a poset is defined
in terms of antichains.

Definition 1.25 Let P be a poset. Then the size of the largest antichain of
P is called the width of P .

Note that there is some question of whether the ‘size of the largest an-
tichain’ is a well-formed object in the case of an infinite poset which contains
arbitrarily large or infinite antichains, and in these cases greater specificity
is needed. However, since our work is concerned only with finite posets, we
deem such details beyond our scope and do not pursue them.

In the finite case, at least, we can see that this definition of width cor-
responds at least somewhat to our intuitions of what ‘width’ should be; for
example, a chain, which we would expect from the name or definition to be
long and skinny, will always have width exactly 1, whereas an antichain with
n members, which we would expect to be wider, will have width n.
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The usefulness of width for our purposes, though, comes not from its
correspondence with our intuitions per se but rather from its relation to
chain partitions. We are interested in which collections of sizes for a chain
partition are possible; as a first step, it is useful for us to know which how
many chains such a partition might conceivably have. This question is the
object of the following celebrated theorem of Dilworth.

Theorem 1.26 ([3]) Let P be a poset of some finite width w. Then the
minimum number of chains in any chain partition of P is precisely w.

It is clear that this minimum number of chains must be at least the width
w, since there is an antichain with w members; these elements are pairwise
unrelated, so no two of them may be contained in a single chain and hence
any chain partition of P must have, at minimum, one chain for each of them.
The content of Dilworth’s theorem, which we will not attempt to prove here,
lies in the fact that there is a partition of P into exactly w chains.

Although this gives us a nice starting point for thinking about the chain
partitions which are and are not possible, attempting make use of it brings us
to the difficulty of actually determining our posets’ widths. In the case of the
Boolean lattice 2[n] in particular, it is not immediately clear how we might
prove a general formula for the width in terms of n. As it happens, such a
proof is possible, and was produced by Sperner in 1927 [19]; however, rather
than attacking this problem directly, we will approach it in more general
terms which also give us the opportunity to introduce an important family
of posets.

1.3 Graphs and normalized matching posets

We now step back briefly from our examination of posets to introduce a
related family of combinatorial objects, the graphs. There are actually several
differing notions of what it means to be a graph; in the technical terminology,
we will define our graphs so as to be of the sort which are finite, undirected,
and simple, although we will refer to them as ‘graphs’ without reference to
these adjectives. The reader unfamiliar with such distinctions may safely
disregard them.

Definition 1.27 Let V be a finite set and E a subset of the set of unordered
pairs of elements of V . Then the ordered pair G = (V,E) is called a graph.
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Figure 1.10: A graph with 9 vertices and 16 edges.

The elements of V are called G’s vertices and, for x, y ∈ V , the unordered
pair {x, y}, which is often written simply xy, is called an edge between x
and y if it is in E. We may also say that an edge xy is incident to x and y
and, given that there is an edge between x and y, we say that x and y are
adjacent or that x is a neighbor of y (and vice versa).

Note that an unordered pair of elements in V is really just a subset of V
containing exactly two elements. A graph is often visualized as a collection
of points with line segments drawn between them to represent edges; one
such visualization is depicted in Figure 1.10.

As in the case of a poset, a graph may possess a complicated internal
structure which makes it difficult to reason about in its totality. Therefore,
again as before, we can focus on simpler substructures which make it easier
to comprehend at least some of the information contained in the graph as
a whole. For example, we might, in a way similar to our previous approach
of ignoring some relationships among elements of a poset to obtain a chain
partition, choose to focus on some subset of the edges of a graph.

Definition 1.28 Let G = (V,E) be a graph. Then a matching of G is a
subset M ⊆ E of the set of edges such that every vertex in V is incident to
at most 1 of the edges of M .

An example of a matching on the graph of Figure 1.10 is depicted in
Figure 1.11. The reason we call such a subset a ‘matching’ is because each
of its edges uniquely matches its incident vertices to one another; however,
it should be noted that not every vertex is guaranteed to be incident to an
edge of the matching, so there may be vertices which M does not match to
any other. We introduce terminology to be able to speak more readily about
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Figure 1.11: A matching on the graph of Figure 1.10. Unused edges are
displayed in dotted gray.

such matters.

Definition 1.29 Let G = (V,E) be a graph, M a matching of G, and
x ∈ V . Then we say that M covers x if there is an edge incident to x in M .
Extending this notion, we also say that M covers a set X ⊆ V of vertices if
it covers every element of X.

In using matchings to think about graphs, we will naturally be interested
in those which cover as many vertices as possible, since these convey the most
information about the graph. We formalize this notion as follows.

Definition 1.30 Let G = (V,E) be a graph and M a matching of G. Then
we say thatM is a maximum matching if there does not exist any matching
M ′ of G which contains a strictly greater number of edges than M .

For example, the matching of Figure 1.11 is maximum, since the graph
contains only 8 vertices which have incident edges and each edge in a match-
ing must be incident to two unique vertices, meaning that no matching in
such a graph may contain more than 8/2 = 4 edges.

Note that, in spite of the similarity of the words in both form and informal
meaning, it is not correct to use ‘maximum’ and ‘maximal’ interchangeably
in this context. A matching is said to be maximal if no additional edges
can be added to it to produce a new matching, and, although maximum
matchings are clearly maximal, a maximal matching need not be maximum.
This is to say that, with a little thought, we can construct a matching which
cannot be extended by the inclusion of additional edges to a matching of
maximum size. However, given a matching, it is not entirely impossible to
construct a maximum one which corresponds to it in some meaningful way.
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Theorem 1.31 Let G = (V,E) be a graph and M a matching of G. Then
there exists some maximum matching M ′ of G which covers every vertex
covered by M .

Thus, although we cannot guarantee that there is a maximum matching
containing the edges of a given matching M , we can at least produce one
which does not leave any of the vertices matched in M unmatched. This
is a standard theorem of graph theory, although its proof is nontrivial and
requires enough extraneous machinery that we will not touch upon it here.
The curious reader may wish to seek it out in Asratian et al.’s Bipartite
Graphs and their Applications [2].

Often, and especially in the study of matchings, we are interested in
graphs where the edges encode a relationship between objects of two distinct
types. For example, we might wonder whether, given a finite set of people
and a finite set of fancy desserts such that each person would enjoy eating
some, but not necessarily all, of the desserts, it is possible for us to give a
dessert to each person such that all are satisfied. Formally, this problem
amounts to searching for a matching M of the graph with vertices which are
either desserts or people, and an edge between two vertices exactly when one
vertex is a dessert and the other is person who wants to eat that dessert, such
that M covers the set of vertices which correspond to people. The graphs
which arise in such situations are called bipartite.

Definition 1.32 Let G = (V,E) be a graph. Then we say that G is bipar-
tite if there exist disjoint, nonempty subsets X and Y of G such that V is
the union of X and Y and E does not have any edge which connects two
elements of X or of Y to one another.

When we wish to make explicit our choice of X and Y (since these are
not guaranteed to be uniquely determined in all cases) and to emphasize that
our graph is bipartite, we write G = (X,∆, Y ), where

∆ = {(x, y) ∈ X × Y | xy ∈ E},

instead of G = (V,E).

An example bipartite graph is depicted in Figure 1.12. As we have men-
tioned, we are interested in finding matchings on bipartite graphs, partic-
ularly those which cover one of the two parts of the graph. The following
theorem, first published in 1931 by König but often associated with Hall,
who published it in 1935, gives a characterization for when this is possible.
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Figure 1.12: A bipartite graph, drawn so that elements in the same part have
the same vertical position.

Theorem 1.33 (Marriage Theorem) Let G = (X,∆, Y ) be a bipartite
graph. Then G has a matching which covers X if and only if every Z ⊆ X
satisfies |Z| ≤ |Γ(Z)|, where Γ(Z) ⊆ Y denotes the set of neighbors in G of
elements of Z.

The proof of this fact, and the origin of the theorem’s name, are treated in
Anderson’s aforementioned work [1]. For our part, we are interested mostly
in its implications for the bipartite graphs with the following important prop-
erty.

Definition 1.34 Let G = (X,∆, Y ) be a bipartite graph. Then G is said to
be normalized matching if, for every Z ⊆ X, we have

|Γ(Z)|
|Y |

≥ |Z|
|X|

.

That is, for any such Z, the proportion of Z’s neighbors within Y is no
smaller than the proportion of elements of Z within X. For example, the
graph of Figure 1.12 is normalized matching.

Note that our definition, as stated, appears to privilege one of the two
parts X and Y of our graph over the other, in the sense that we do not require
a similar condition for the neighbors in X of a subset of Y . However, this is
illusory; that is, (X,∆, Y ) is normalized matching if and only if (Y,∆′, X) for
∆′ = {(y, x) | (x, y) ∈ ∆} is. The proof of this fact is fairly straightforward.

We will, in our later work, find it to our advantage to be able to merge
related normalized matching graphs to produce new ones. The following
result guarantees that this is possible.

Lemma 1.35 Suppose (X,∆1, Y1) and (X,∆2, Y2) are normalized matching
bipartite graphs with Y1 and Y2 disjoint. Then (X,∆1 ∪ ∆2, Y1 ∪ Y2) is
normalized matching as well.
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That is, given two normalized matching bipartite graphs such that we
can identify a part of one with a part of the other, we can combine the non-
identified parts of the graphs with one another to produce a third graph,
which also has the normalized matching property.

As in the case of bipartite graphs more generally, we may be interested
in finding a matching on a bipartite graph with the normalized matching
property which covers one of its parts. The following result on this topic is
not difficult to prove using the Marriage Theorem.

Proposition 1.36 Let G = (X,∆, Y ) be a normalized matching bipartite
graph. Then G has a matching which covers X if and only if |X| ≤ |Y |.

In particular, if both parts of our graph have the same size, the normal-
ized matching property guarantees a matching which covers both, since the
number of edges needed to cover the first will also necessarily cover the sec-
ond. This fact will be of use to us later. For the time being, however, we
would like to relate all of the concepts we have been building up back to our
study of posets. The following construction allows us to do so.

Definition 1.37 Let P be a finite poset. Then the comparability graph
G(P ) of P is defined by G = (P,E), where

E = {{x, y} | x, y ∈ P and either x < y or y < x}.

This is to say that P ’s comparability graph is the graph which has vertex
set P and an edge between two distinct elements of P if and only if the two
are comparable.

We can apply this notion to the ranked posets with which we have been
working. Specifically, we define a normalized matching property for posets
as follows.

Definition 1.38 Let P be a ranked poset with levels A0, A1, . . . , An. Then
we say that P is normalized matching if, for every choice of distinct i, j ∈
{0, . . . , n}, the comparability graph G(Ai∪Aj) of the induced subposet on the
levels Ai and Aj has the normalized matching property for bipartite graphs.

This is to say that, if we consider the levels of P pairwise, the relationships
between their elements will give us normalized matching graphs. Note that,
by Proposition 1.24, each Ai will be an antichain and so, for any choice of
distinct i and j, the induced subposet on the corresponding levels of P will
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actually have a bipartite comparability graph of the form (Ai,∆, Aj); hence,
our definition is well-formed.

As the reader may be expecting, this notion is relevant to the classes of
posets with which we are concerned. Specifically, the following result holds.

Proposition 1.39 Let d be a positive integer and P a d-dimensional grid.
Then P has the normalized matching property.

In particular, the Boolean lattice 2[n] is a normalized matching poset for
any positive integer n. This fact has several proofs, requiring varying degrees
of additional conceptual machinery and of effort; we again refer the interested
reader to Anderson’s work [1].

We, just before our digression into graph theory, evinced an interest in
determining the width of the Boolean lattice; now, it will be possible to use
the normalized matching property to do so. Consider the following property
of a ranked poset.

Definition 1.40 Let P be a ranked poset with levels A0, A1, . . . , An. Then
we say that P has the LYM property if, for every antichain A ⊆ P ,

n∑
i=0

|A ∩ Ai|
|Ai|

≤ 1.

This definition shares with that of the normalized matching property the
idea that, rather than considering the absolute size of a subset of a ranked
poset’s level, we should really focus on its size as a proportion of the whole
level. Therefore, it is reasonable to suspect that the two properties might
be related. The following theorem of Kleitman characterizes the extent to
which this is true.

Theorem 1.41 ([16]) Let P be a ranked poset. Then P is normalized
matching if and only if it has the LYM property.

From the LYM property, it is not terribly difficult to deduce the following
fact.

Corollary 1.42 The width of a normalized matching poset is precisely the
size of its largest level.

Therefore, in the case of the Boolean lattices, we can use Proposition 1.22
to obtain an explicit formula for the width.
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Proposition 1.43 Let n be a positive integer. Then the width of 2[n] is
given by the binomial coefficient

(
n
bn/2c

)
.

We are now in a position to begin our examination of the outstanding
conjectures on the Boolean lattice.
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Chapter 2

Approximating the Füredi
Partition

As we have mentioned, we are interested in Füredi’s 1985 conjecture on the
possibility of obtaining a particular partition of the Boolean lattice. We state
it now in formal terms.

Conjecture 2.1 Let n be a positive integer. Then 2[n] has a partition into
the minimum number of chains such that the chain sizes differ pairwise by
at most 1.

By Dilworth’s theorem and our results on the width of the Boolean lattice,
we know that this minimum number of chains is exactly

(
n
bn/2c

)
. Hence, since

|2[n]| = 2n, we can conclude that the chain sizes in such a partition will be `
and `+ 1, where

` =

⌊
2n(
n
bn/2c

)⌋,
and that the number of chains of size ` + 1 will be the remainder of 2n on
division by

(
n
bn/2c

)
. We call a partition of 2[n] with these chain sizes a Füredi

partition.
As one might infer from the fact that Füredi’s conjecture has remained

open for more than three decades, Füredi partitions are highly nontrivial to
construct in general. Therefore, in the search for a method which might yield
a proof of the conjecture, it is advantageous to settle for some loosening of
these restrictions; that is, we construct chain partitions which, though they
may have chain sizes differing by more than one, satisfy some weaker criterion

23
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∅

{1} {2} {3} {4}

{1, 2} {1, 3} {1, 4} {2, 3} {2, 4} {3, 4}

{1, 2, 3} {1, 2, 4} {1, 3, 4} {2, 3, 4}

{1, 2, 3, 4}

Figure 2.1: A Füredi partition of 2[4]. Note that the chain sizes are 3, 3, 3,
3, 2, and 2.

for approximate uniformity of chain sizes. We do so both for the sake of these
partitions themselves, since it is entirely possible that they might be uniform
enough for some applications, and in the hope that the methods we develop
might be refined to yield a Füredi partition.

In this chapter, we will explicate the results of István Tomon’s 2015 paper
On a conjecture of Füredi [21], which introduces a variety of techniques for
obtaining partitions into chains of approximately uniform size. Although we
have occasionally made changes to the paper’s reasoning to produce tighter
or more precisely stated bounds and, in one case, introduced a new lemma
(2.5) to address a gap in the original proof of Lemma 2.6, all subsequent
results are due to Tomon.

2.1 Results on normalized matching posets

Note that, although we have followed Füredi in stating his conjecture in
terms of the Boolean lattice, it is quite possible to ask whether a partition
satisfying the same criteria exists for any given poset. That is, if P is a poset
of width w, we can ask whether P has a partition into w chains such that

each has size
⌊
|P |
w

⌋
or
⌊
|P |
w

⌋
+ 1.

Therefore, various authors have proposed more general classes of posets
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for which the analogue of the Füredi conjecture might hold. Hsu et al.
[14] suggest that it may be possible to obtain a Füredi partition for any
rank-symmetric, unimodal normalized matching poset. Tomon, in the paper
which we are examining, further generalizes this by positing that the rank-
symmetry requirement is unnecessary, and the result holds for any unimodal
normalized matching poset. Note that, since the Boolean lattice is rank-
symmetric, unimodal, and normalized matching, either of these modified
conjectures would imply the truth of the Füredi conjecture.

2.1.1 Partitions into chains with sizes bounded above

In pursuit of his favored generalization of Füredi’s conjecture, Tomon intro-
duces several results concerning unimodal normalized matching posets. The
first of these states that we can partition such a poset into chains so that
no chain is larger than around twice the size we would want for the Füredi
partition.

Theorem 2.2 ([21]) Let P be a unimodal normalized matching poset of
width w. Then P can be partitioned into w chains of size strictly less than
2|P |
w

+ 1.

Most of the work lies in the proof of the following lemma, which gives
an analogous result for normalized matching posets which are monotone
rather than just unimodal.

Lemma 2.3 ([21]) Let P be a normalized matching poset of width w with
monotonically non-increasing rank numbers. Then P can be partitioned into
w chains such that each is of size strictly less than 2|P |

w
.

Note that this fact can be applied to show the equivalent result when
the rank numbers are monotonically non-decreasing instead, since a chain
partition of a poset is also a chain partition of its dual. The basic concept
of the proof is that we can flatten some of the small levels higher up in the
poset together and juxtapose this with several of the lower levels to obtain
a new normalized matching poset with the same width and a smaller rank;
using a chain partition of this new poset, we can construct one of the old
poset with chain sizes bounded above.

Proof Observe that, if |P | = w, the result is trivial since partitioning P
into singletons gives us a partition into w chains with chain sizes 1.
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α0 β0

α1 β1

α2 β2

α3 β3

α4 β4

α5 β5

α6 β6

γ

α0 β0

α1 β1

α2 β2α4 β4α6 β6

Figure 2.2: A rank-7 poset P and its corresponding Q2. Note that not all
elements of P are present in Q2.

Otherwise, since w is the size of P ’s largest level by Corollary 1.42, P has
at least two levels, and so we can let A0, A1, . . . , An for some positive integer
n be P ’s levels. By hypothesis, we have w = |A0| ≥ |A1| ≥ . . . ≥ |An|.

For k ∈ N, let Qk be the rank-k poset with levels B0 = A0, B1 =
A1, . . . , Bk−1 = Ak−1, Bk =

⋃bn/kc
r=1 Ark, where the relationships between el-

ements in different Bi are induced by their relationships in P and all the
elements within each Bi are pairwise unrelated. That is, Qk is the poset
obtained by collapsing all levels whose indices are nonzero multiples of k into
the same level and removing every other level with index greater than k;
this is depicted for a simple example poset in Figure 2.2. Lemma 1.35 on
merging normalized matching graphs, applied repeatedly, tells us that Qk is
normalized matching since P is.

Now let d be the smallest such k satisfying width(Qk) = w, which is to

say
∑bn/kc

r=1 |Ark| ≤ w, since the only way Qk can have a width other than
w is if the merged level is too large. Observe for any natural number k and
r ∈ {1, . . . , bn/kc} that the sum |Ark−(k−1)| + |Ark−(k−2)| + . . . + |Ark−1| +
|Ark| of the sizes of Ark and the k − 1 preceding levels of P is, by P ’s
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monotonicity, greater than or equal to |Ark| + |Ark| + . . . + |Ark| + |Ark| =

k|Ark|. Thus
∑bn/kc

r=1 |Ark| ≤
1
k

∑kbn/kc
i=1 |Ai|, which is less than or equal to

1
k
(|P | − |A0|) = 1

k
(|P | −w) by the definitions. As such, a sufficient condition

to obtain width(Qk) = w is 1
k
(|P |−w) ≤ w, which is equivalent to k+1 ≥ |P |

w
,

or k ≥ |P |
w
− 1. Since there is necessarily a positive integer in the range[

|P |
w
− 1, |P |

w

)
by our stipulation that |P | > w, this gives us d < |P |

w
.

Since Qd is of width w, Dilworth’s theorem tells us it has a partition into
w chains, each of which clearly has size at most d + 1. Since all relations in
Qd are valid in P , this gives us such a partition on the subposet of P with
the same elements as Qd but all of the induced relations, with the property
that each element of any of Ad, A2d, . . . , Adbn/dc is the largest element of a
distinct chain in the partition. Denote the set of chains of this partition by
{Ci | 1 ≤ i ≤ w}.

For each i ∈ {1, . . . , bn/dc}, define Ri to be the induced subposet of P
on
⋃d−1
ρ=0Aid+ρ, where we define Aj = ∅ whenever j > n. This is to say

that Ri consists of the levels of P with indices from id to (i + 1)d− 1, with
the ‘levels’ which are above the top of P defined to be empty. Then each
Ri is a normalized matching poset of d or fewer levels with monotonically
non-increasing sizes, so we can partition every Ri into |Aid| chains of size at
most d, one for each element on the lowest level. Denote each such chain by
Dx, where x is the chain’s minimal element.

Now we can, for each 1 ≤ i ≤ w, define C ′i such that, if x ∈ Ci for some
x ∈ Ad ∪ A2d ∪ . . . ∪ Adbn/dc, C ′i = Ci ∪Dx, and C ′i = Ci otherwise. By our
prior reasoning, such an x will be the unique largest element of Ci if it exists,
so each C ′i is, in fact, a chain. Since each such coupled Ci and Dx will have an

intersection of exactly 1, we have |C ′i| ≤ (d+1)+d−1 = 2d < 2|P |
w

. Moreover,
every element of P will be in exactly one C ′i, since we have constructed these
chains by stitching together chain partitions of subposets of P in such a way
that no chain is left out and no element is reused. Thus we can see that
{C ′i | 1 ≤ i ≤ w} is a partition of P into w chains of size strictly less than
2|P |
w

.

With this result established, the proof of Theorem 2.2 is fairly straightfor-
ward. The basic concept is that we can view a unimodal poset as, essentially,
two monotone posets stacked on top of one another and overlapping at one
level. For example, in the case of the Boolean lattice 2[4], these monotone
posets are as depicted in Figure 2.3. The chain partitions of these halves
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{1, 2} {1, 3} {1, 4} {2, 3} {2, 4} {3, 4}

{1, 2, 3} {1, 2, 4} {1, 3, 4} {2, 3, 4}

{1, 2, 3, 4}

∅

{1} {2} {3} {4}

{1, 2} {1, 3} {1, 4} {2, 3} {2, 4} {3, 4}

Figure 2.3: The two monotone halves of 2[4]. Note the shared level.

given by our lemma can then be combined to prove the theorem.

Proof of Theorem 2.2 Consider a unimodal normalized matching poset
P of width w with levels A0, A1, . . . , An and let ` ∈ {0, . . . n} be such that
|A`| = w. If we let U be the induced subposet of P on all levels of index at
least ` and L the one on all levels of index at most `, we can observe that
|U | + |L| = |P | + w, since the two subposets together contain all of P and
are disjoint except for a shared level of size w.

Since U and L are both posets of width w with monotone level sizes, we
can apply Lemma 2.3 to get chain partitions of each into w chains with chain
sizes strictly less than 2|U |

w
and 2|L|

w
respectively. Since each of the chains in

each of these partitions will intersect A` at precisely one element, we can
merge the chains Vx ⊆ U and Mx ⊆ L of each partition corresponding to
the same element x of A` to obtain a chain of size |Vx| + |Mx| − |{x}| <
2|U |
w

+ 2|L|
w
− 1 = 2|P |+2w

w
− 1 = 2|P |

w
+ 1. This gives us a chain partition of P

with the desired properties, so the theorem holds.

Therefore, as promised, for any unimodal normalized matching poset, we
can obtain a chain partition with sizes at most roughly a factor of two larger
than those suggested by the generalized version of Füredi’s conjecture.
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2.1.2 Partitions into chains with sizes bounded below

We have already given a result which approaches the generalized Füredi
conjecture by producing a chain partition with chains whose sizes cannot be
too much larger than those of a Füredi partition. In the best case for this
approach, if we were able to bring our bound down to guarantee a partition

with chain sizes less than or equal to
⌊
|P |
w

⌋
+1, we would not obtain a Füredi

partition precisely, since the possibility would remain of having too many
chains of this maximum size and hence having some chains smaller than⌊
|P |
w

⌋
. However, this partition might still be useful in obtaining the Füredi,

since we could reason about the possibility of reassociating elements of the
excess long chains to obtain the sought-after partition.

On the other hand, even if we could produce such a bound, it is not
guaranteed that a reassociation of the type we have discussed could be found.
Thus, it might plausibly be more useful to instead bound our chain sizes from

below. If we could increase such a bound to
⌊
|P |
w

⌋
, we would again not be

guaranteed the Füredi partition, since we could have too many chains of the

minimum size and hence some chains larger than
⌊
|P |
w

⌋
+1, but the possibility

that this reassociation problem would be more tractable than the other exists
and, of course, it is far from clear which bound might be easier to push to
the desired size.

Therefore, although it may seem redundant at first blush, obtaining a
partition into chains with sizes which are not too much smaller than those of
the Füredi partition is a reasonable avenue of inquiry to pursue. Tomon’s re-
sult, again on unimodal normalized matching posets, gives a partition where
the chain sizes are at least around half of the desired ones.

Theorem 2.4 ([21]) Let P be a unimodal normalized matching poset of
width w > 1. Then P can be partitioned into w chains of size at least
|P |−1
2(w−1) −

1
2
.

The proof of this fact relies on Lemmas 2.5 and 2.6, both of which are
highly technical.

Lemma 2.5 Let a0 ≥ a1 ≥ . . . ≥ am be positive integers such that, if we



30 CHAPTER 2. APPROXIMATING THE FÜREDI PARTITION

define f : {0, . . . ,m} ∪ {∞} → {0, . . . ,m} ∪ {∞} by

f(k) =

{
min{k < i ≤ m | ak+1 + . . .+ ai ≥ a0} if this set is non-empty

∞ otherwise
,

there exists some p ∈ {0, . . . ,m} with f(p) = m. Then, for any non-negative
integers x0, . . . , xp such that xi ≤ ai for every i ∈ {0, . . . , p}, we have

m∑
i=1

ai max

{
xk
ak

∣∣∣ k ∈ {0, . . . , p}, k < i ≤ f(k)

}
≥

p∑
i=0

xi.

This result is somewhat abstruse, and it may be useful, by way of moti-
vation, to first peruse the proof of Lemma 2.6. The basic intuition is that
the ai represent level sizes of a normalized matching poset and the xi the
sizes of subsets of each level, and we are interested in a lower bound for the
size of the set of neighbors of these subsets, with the restriction that we only
consider neighbors which are above, but not too far above, each element,
where ‘too far above’ is as delimited by f .

It may also be helpful to think of f just in terms of sequences of integers.
This function, given an input k, returns the last index in the smallest con-
tiguous block of entries immediately after index k with values summing to
at least the value of the largest entry a0 in the sequence.

Proof We proceed by induction on p.

Base Case: Suppose p = 0. Then, since {0, . . . , p} = {0} and f(0) = m,

m∑
i=1

ai max

{
xk
ak

∣∣∣ k ∈ {0, . . . , p}, k < i ≤ f(k)

}
is equal to

m∑
i=1

ai max

{
x0
a0

∣∣∣ 0 < i ≤ m

}
=

m∑
i=1

ai
x0
a0

=
x0
a0

f(p)∑
i=1

ai,

which is, by the definition of f , at least

x0
a0
a0 = x0 =

p∑
i=0

xi.

The result follows.
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Hypothesis of Induction: Let p ∈ N and suppose that the result holds
for all such sequences with p = p − 1 to show that it holds whenever
p = p.

Inductive Step: Let a0 ≥ . . . ≥ am be such a sequence with p = p. Define
si for i ∈ {0, . . . ,m} recursively by setting si = min{ai, ap−

∑m
j=i+1 sj}

and let a′i = ai − si for all i ∈ {0, . . . ,m}. Then we can see that the
sum of the sequence (a′i) is exactly ap less than that of (ai), and we
have accomplished this by removing as much value as possible from the
highest-indexed entries in our sequence. Let ` be the largest value such
that a′` is greater than 0.

Let f ′ be (a′i)’s equivalent to f , where we view (a′i) as a sequence of
positive integers by restricting i to {0, . . . , `}. Then we can see that
f ′(p− 1) is finite. Because ap+1 + . . .+ am ≥ a0 ≥ ap by the definition
of p = p and we constructed the primed sequence by reducing higher-
indexed values first, we can see that sp is equal to zero and so a′i = ai
for all i ≤ p. Therefore, using the fact that a′i = 0 for i > `, we have

a′p+. . .+a′` = a′p+. . .+a′m = ap+(ap+1+. . .+am−ap) = ap+1+. . .+am,

which is again greater than or equal to a0 = a′0 by the definition of p.
The claim of finiteness follows.

Moreover, f ′(p) is infinite, since we have

a′p+1 + . . .+ a′` = ap+1 + . . .+ am − ap ≤ ap+1 + . . .+ am−1

and so a′p+1 + . . .+ a′` ≥ a0 would contradict the hypothesis f(p) = m.

Let m′ = f ′(p − 1) ≤ `, and truncate (a′i) to a sequence with highest
index m′. Then we can see that the analogue to f for this sequence
will agree with f ′ wherever both are defined, since the terms of (a′i)
with indices larger than m′ will never affect the calculation of f ′(k) for
k ≤ p − 1, due to the fact that a′k+1 + . . . + a′i ≤ ap′ + . . . + a′i always
for such k, and both functions will be infinite on all p ≤ k ≤ m′.

Moreover, the p-value of this new sequence will be p− 1. Thus, by the
hypothesis of induction, we have

m′∑
i=1

a′i max

{
xk
a′k

∣∣∣ k ∈ {0, . . . , p− 1}, k < i ≤ f ′(k)

}
≥

p−1∑
i=0

xi,
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where we need not modify the xk since a′k = ak for the k we are consid-
ering. The expression on the left-hand side of this inequality is equal
to

m′∑
i=1

(ai − si) max

{
xk

ak − 0

∣∣∣ k ∈ {0, . . . , p− 1}, k < i ≤ f ′(k)

}
.

Fix k ≤ p− 1. Note that f ′(k) ≤ ` and hence a′i = ai for i < f ′(k). As
such,

ak+1 + . . .+ af ′(k)−1 = a′k+1 + . . .+ a′f ′(k)−1 < a′0 = a0,

so f(k) ≥ f ′(k). Moreover, since af ′(k) ≥ a′f ′(k) by definition, we have

ak+1 + . . .+ af ′(k) ≥ a′k+1 + . . .+ a′f ′(k) ≥ a′0 = a0,

so in fact f(k) = f ′(k).

As such, by the non-negativity of the values involved, we can add some
terms and expand the set which we are taking the maximum of slightly
to see that our sum is bounded above by

m∑
i=1

(ai − si) max

{
xk
ak

∣∣∣ k ∈ {0, . . . , p}, k < i ≤ f(k)

}
,

which is equal to

m∑
i=1

ai max

{
xk
ak

∣∣∣ k ∈ {0, . . . , p}, k < i ≤ f(k)

}
minus

m∑
i=`

si max

{
xk
ak

∣∣∣ k ∈ {0, . . . , p}, k < i ≤ f(k)

}
.

Since every index ` or above is greater than p but less than or equal to
f(p) = m, the subtrahend is greater than or equal to

m∑
i=`

si
xp
ap

=
xp
ap

m∑
i=`

si =
xp
ap
ap = xp.
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Therefore the left-hand side of our original inequality is bounded above
by (

m∑
i=1

ai max

{
xk
ak

∣∣∣ k ∈ {0, . . . , p}, k < i ≤ f(k)

})
− xp;

since the right-hand side is equal to
∑p

i=0 xi − xp, adding xp to both
sides of the resulting inequality gives us

m∑
i=1

ai max

{
xk
ak

∣∣∣ k ∈ {0, . . . , p}, k < i ≤ f(k)

}
≥

p∑
i=0

xi,

as desired.

The induction proves the claim.

We can now proceed to the following lemma on monotone normalized
matching posets.

Lemma 2.6 ([21]) Let P be a normalized matching poset of width w with
levels A0, A1, . . . , An and monotonically non-increasing rank numbers, so that
w = |A0|. Define a function f : {0, 1, . . . , n} ∪ {∞} → {0, . . . , n} ∪ {∞} by

f(k) =

{
min{k < i ≤ n

∣∣ |Ak+1|+ . . .+ |Ai| ≥ w} if this set is non-empty

∞ otherwise

and let d be the largest integer such that fd(0) < ∞. Then P can be
partitioned into w chains, each of size at least d+ 1.

Although the statement of this result is far from intuitive, the basic con-
cept of the proof is surprisingly natural. We will build a chain partition of P
from the bottom up; that is, we start with an element of A0 and construct
a chain by repeatedly adding in an element greater than the current top of
our chain. However, we do so myopically, without being able to look very
far upward: the levels from which we are allowed to select the element we
are to add are delimited by the result of f applied to the rank of current top
element. Hence, since d then gives us some lower bound on the number of
steps we must take to reach the top of the poset and be forced to terminate,
we can get a corresponding lower bound on the size of our chains.
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Proof Let p be the largest element of {0, . . . , n} such that f(p) is finite, and
note that, although their definitions are similar, p and d are not, in general,
equal. Also note that p < n, since we can see that f(n) =∞.

Now let A be an unordered copy of the levels A0, . . . , Ap of P ; that is,
for every a ∈ A, there is a unique associated element φA(a) in

⋃p
i=0Ai, and

this makes φA a bijection. Similarly, let B be an unordered copy of the levels
A1, . . . , Af(p) with bijection φB : B →

⋃f(p)
i=1 Ai.

Having done this, define a bipartite graph G = (A,∆, B) by (a, b) ∈
∆ ⇔

(
rk(φB(b)) ≤ f(rk(φA(a))) and φA(a) < φB(b)

)
. In practical terms,

this means that the edges of our bipartite graph are given by relationships in
P , but only those such that the element of A we are considering is strictly less
than the element of B and the element of B is within the block delimited by
f applied to the element of A. This restriction corresponds to the ‘myopia’
which we discussed earlier.

We will now show that it suffices to produce a matching in G which covers
A. Suppose that we have such a matching, and hence that a maximum
matching in G has |A| edges. Now observe for any 0 ≤ i < n that we have a
matching in P between Ai and Ai+1 which covers Ai+1 by Proposition 1.36,
since P is normalized matching and |Ai+1| ≤ |Ai|. Since all the edges in
these matchings are preserved in G for 0 ≤ i ≤ p, we can use this fact to
construct a matching in G between A = φA

−1(
⋃p
i=0Ai) and the newly defined

set B0 = φB
−1(
⋃p+1
i=1 Ai) which covers B0. By Theorem 1.31, there then exists

a maximum matching in G which covers B0; since a maximum matching in
G has |A| edges and G is bipartite, this gives us a matching M in G which
covers both A and B0.

We use this matching to construct pairwise disjoint chains {Cx}x∈A0 in P
as follows. In a slight abuse of notation, we will think of M as an injective
function M : A→ B which takes each element of A to its matched element of
B. Then our process will be to begin with Cx = {x} and iteratively add the
element (φB ◦M ◦ φA−1)(y) of P which M matches to y’s counterpart in A,
where y is the current maximal element in Cx, to Cx. We will stop after the
first time we add a point with rank greater than p to Cx. Put more simply,
the chains Cx which we obtain are the ones which result from following all
edges in M while identifying elements of A and B which correspond to the
same element of P with one another.

We claim that, for each x ∈ A0, |Cx| ≥ d+ 1. Recall by the construction
of G that, if y < z are consecutive elements of Cx, rk(z) ≤ f(rk(y)). Since
we can see from the definition that f is monotonically increasing, a simple
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inductive argument tells us that the `th-smallest element of Cx has rank at
most f `−1(0). The largest element of Cx has rank at least p+1, so this means
f |Cx|−1(0) ≥ p+ 1. By the definition of p, this means that f |Cx|(0) is infinite,
so |Cx| ≥ d+ 1 as desired.

We now extend these chains to cover all of P , giving us the partition we
sought. For each i ∈ {p + 2, . . . , n}, let Ni be a matching from Ai to Ai−1
which covers Ai; continuing our abuse of notation, we will again think of
this a function Ni : Ai → Ai−1. Note that, since M covered A and B0, the
chains Cx collectively cover the levels A0, . . . , Ap+1. Therefore, we can add
the elements of P not covered by the Cx to them as follows:

• At each stage, let y be an element of minimal rank among the elements
not yet in chains.

• Let z = Nrk(y)(y) be the element to which y is matched by the appro-
priate matching from among the Ni. Observe by the minimality of y
that z ∈ Cx for some x ∈ A0.

• Moreover, note that z is maximal in Cx. If z was added to Cx during
its original construction, it was the last element thus appended, since
we stopped building Cx as soon as we included an element of rank more
than p; since rk(y) ≥ p+ 2, rk(z) ≥ p+ 1. If z was added to Cx during
this process, the minimality of y and the injectivity of Nrk(y) guarantee
that no elements larger than z have yet been added to Cx. Therefore,
add y to Cx; the result will still be a chain.

• Repeat these steps until the chains cover all elements of P .

Therefore, the lemma holds so long as we can actually produce a matching
on G which covers A. By the Marriage Theorem (Theorem 1.33), it suffices
to show that, if Γ(X) denotes the set of neighbors of elements of X ⊆ A,
|Γ(X)| ≥ |X| for all such X.

Consider arbitrary such X and, for each i ∈ {0, . . . , p}, let Xi = X ∩
φA
−1(Ai); that is, Xi is the set of elements of X corresponding to elements

on level Ai in P . Similarly, for j ∈ {1, . . . , f(p)}, let Γj : P(A) → P(B)
be given by Γj(Z) = Γ(Z) ∩ φB−1(Aj); this is the set of neighbors of Z
corresponding to elements on level Aj in P .

Then we can see that Γ(X) =
⋃p
k=0

⋃f(k)
i=k+1 Γi(Xk). Interchanging the
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unions appropriately and using the disjointness of the Γis’ images gives us

|Γ(X)| =
f(p)∑
i=1

∣∣∣∣∣∣
⋃

k∈{0,...,p},k<i≤f(k)

Γi(Xk)

∣∣∣∣∣∣ ≥
f(p)∑
i=1

max
k∈{0,...,p},k<i≤f(k)

|Γi(Xk)|.

Since P is normalized matching, this in turn is greater than or equal to

f(p)∑
i=1

max
k∈{0,...,p},k<i≤f(k)

|Ai|
|Xk|
|Ak|

.

However, we can see that, if we let m = f(p) and ai = |Ai| and xi = |Xi|
for all appropriate i, then our function f is actually the function f from the
previous lemma, and the previous expression is one side of the inequality in
that lemma’s result, so we can apply it to obtain |Γ(X)| ≥

∑p
i=0 |Xi| = |X|

as desired. As previously discussed, the result follows.

Although this lemma is quite powerful, it is desirable to state our bounds
in terms of parameters of our poset more commonly used than d. This goal
gives rise to the following bound for d, which will be useful in our proof of
Theorem 2.4.

Lemma 2.7 ([21]) Suppose that the hypotheses of Lemma 2.6 hold with

w > 1. Then d+ 1 ≥ |P |−1
2(w−1) .

Proof We claim that, if we take Ai to be the empty set for all i > n, we
have

∑f(k)
i=k+1 |Ai| ≤ 2w− 2 for all k ∈ {0, 1, . . . , n}. In the case where f(k) is

finite and |Af(k)| is strictly less than w, this is because
∑f(k)

i=k+1 |Ai| ≥ 2w− 1

would imply that
∑f(k)−1

i=k+1 |Ai| > w − 1 and so contradict the minimality of
f(k). If |Af(k)| = w, we have f(k) = k + 1 and so our sum is equal to w,
which is bounded above by 2w − 2 by the hypothesis w > 1. Finally, if f(k)
is infinite, the definition of f tells us that the sum of the sizes of all levels
above k is less than w ≤ 2w − 2, so the inequality holds in all cases.

Thus, for any ` ≥ 0, we can see that

f`(0)∑
i=0

|Ai| = w +
∑̀
j=1

fj(0)∑
i=fj−1(0)+1

|Ai| ≤ w + `(2w − 2),
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so the inequality |P | − w − `(2w − 2) ≥ w implies that there are at least
w elements above level f `(0) and hence that d > `. Therefore, we have

|P | − w − d(2w − 2) ≤ w − 1, which gives us d ≥ |P |−2w+1
2(w−1) = |P |−1

2(w−1) − 1.

We are now in a position to prove the result which was our original goal
without too much additional work. As in the proof of Theorem 2.2, we break
our unimodal poset into two overlapping monotone posets, then apply the
appropriate lemma and combine the resulting chain partitions.

Proof of Theorem 2.4 Let P a unimodal normalized matching poset
of width w with levels A0, A1, . . . , An, and let ` ∈ {0, . . . , n} be such that
|A`| = w. If we let U be the induced subposet of P on all levels of index at
least ` and L on all levels of index at most `, we can observe as in the proof
of Theorem 2.2 that |U |+ |L| = |P |+ w.

Using Lemmas 2.6 and 2.7 together, we can obtain partitions of these
posets into w each chains with sizes at least |U |−1

2(w−1) and |L|−1
2(w−1) respectively.

Combining these partitions by merging on the chains’ intersections with A`,
as in the proof of Theorem 2.2, yields a partition into w chains with sizes at
least |P |+w−2

2(w−1) − 1 = |P |−1
2(w−1) −

1
2
.

In practice, it may be convenient to use a slightly weaker but less cum-
bersome version of this bound, as originally presented in [21].

Corollary 2.8 Let P be a unimodal normalized matching poset of width w.
Then P can be partitioned into w chains of size at least |P |

2w
− 1

2
.

Proof In the w > 1 case, this follows by arithmetic from Theorem 2.2 and
the inequality w ≤ |P |. If w = 1, P is totally ordered and hence the result
is trivial.

2.1.3 A probabilistic method for obtaining chain par-
titions

Theorems 2.2 and 2.4 give fairly decent bounds in the case of unimodal nor-
malized matching posets. However, it is clear that they are more or less
useless if we wish to answer the Füredi question for a general, not neces-
sarily unimodal, normalized matching poset, since the methodology we used
to prove them depended heavily on the decomposition into two monotone
subposets. To give some idea of what approach we might use in the general
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case, we present a probabilistic technique for obtaining a chain partition with
sizes bounded below developed by Tomon [21].

To state the result, we require a bit of specialized notation. Basic calculus
tells us that, when restricted to the positive real numbers, x 7→ xex is strictly
increasing and therefore invertible.

Definition 2.9 We define W : R+ → R+, where R+ denotes the set of
positive real numbers, to be the inverse of the function x 7→ xex.

In the study of complex analysis, the product logarithm W refers to
a family of functions analogous to the multiple branches of the complex
logarithm, since the function z 7→ zez from the complex plane to itself is
not invertible. Since, as we have noted, no such complications arise in the
positive real case, we need not concern ourselves with the particulars. The
only properties of W which we will use are its definition as an inverse and a
numerical approximation, determined computationally, for its output at 1/e.
We also prove the following simple lemma, which will come in handy later.

Lemma 2.10 Let κ ∈ R such that κ ≥ 1
W (1/e)

≈ 3.591121476669. Then

κ(1− log κ) ≤ −1.

Proof Observe that d
dκ
κ(1 − log κ) = 1 − log κ − 1 = − log κ. By the

bound on κ, this will be negative, so it suffices to demonstrate the result
for κ = 1

W (1/e)
. In this case, we have e = (1/e)−1 = ( 1

κ
e1/κ)−1 = κe−1/κ.

Therefore, 1− log κ = log(e/κ) = − 1
κ
, so κ(1− log κ) = −1.

With these preliminaries accounted for, we are now prepared to examine
the statement of Tomon’s result.

Theorem 2.11 ([21]) Let P be a normalized matching poset of rank n and
width w containing at least two elements and consider arbitrary κ ≥ 1

W (1/e)
≈

3.591121476669. Then, if

n+ 1 ≤ |P |2

2κ2w2(log(2|P |))2 log dw log(2|P |)e
,

there exists a partition of P into no more than dw log(2|P |)e chains such that

each chain has size greater than |P |
2κw log(2|P |) .
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Note that, although we have dropped the unimodality requirement, the
conditions needed for this theorem to apply are not necessarily less restric-
tive; for example, the Boolean lattices do not fulfill the necessary inequality.
Moreover, in at least some unimodal cases where this theorem also applies,
Theorem 2.4 appears to give better bounds [21], and in all cases the partition
which we produce is not guaranteed to have the minimum number of chains.
In spite of these drawbacks, this result is notable for the methodology used,
which is unorthodox and worthy of further exploration.

We make use of the following concept, in some ways similar to that of a
chain partition and in some ways very different.

Definition 2.12 Let P be a ranked poset. Then a regular cover of P is a
finite collection C1, . . . , Cr of maximal chains of P (which are not necessarily
disjoint or distinct) such that each element of P appears on the same positive
number of chains in the collection as every other element of the same rank.

A theorem of Kleitman describes the circumstances under which it is
possible to obtain a regular cover for a poset.

Theorem 2.13 ([16]) Let P be a ranked poset. Then P has a regular cover
if and only if it is normalized matching.

Thus the existence of a regular cover, like the LYM property, turns out
to be equivalent to the normalized matching property.

One further technical result from the study of probability is needed.

Lemma 2.14 ([11]) Let X1, . . . , Xn be independent random variables with
values in {0, 1} and X their sum. Then, for any t > 0, the probability that
E(X)−X ≥ t, where E(X) denotes the expected value of X, is strictly less
than e−2t

2/n.

We are now ready to prove Theorem 2.11. The basic concept of the
proof is that we choose some number of maximal chains randomly from some
fixed regular cover of our poset, then demonstrate that there is a nonzero
probability that these chains have the properties necessary for us to use them
to construct a chain partition of the poset with bounded chain sizes. Since a
nonzero probability means that there is some choice of chains satisfying our
criteria, the result will follow.

Proof of Theorem 2.11 Fix some regular cover C of P and choose M =
dw log(2|P |)e chains, not necessarily distinct, randomly and independently
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from C, where the probability of picking any given chain is simply the number
of times it appears in C as a fraction of the total number of chains, counting
repeats, in the cover. Denote these chains C1, . . . , CM .

Observe that, if M ≥ |P |, we can partition P into M singletons, which
will satisfy our requirement that the chains of the partition have size at least

|P |
2κw log(2|P |) <

|P |
2κ(M−1) = |P |−1

2κ(M−1) + 1
2κ(M−1) ≤

1
κ
< 1. Therefore, we may

assume without loss of generality that M < |P |.
Now, for every x ∈ P , define nx to be the number of elements i ∈

{1, . . . ,M} such that x ∈ Ci, and let A denote the event that nx > 0 for
every x ∈ P . To establish a lower bound on the probability that A occurs,
we consider the probability P(A) = P(∃x ∈ P | x 6∈ Ci ∀i ∈ [M ]) that
it does not occur. We can obtain an overestimate of this quantity by tak-
ing the sum

∑
x∈P P(x 6∈ Ci ∀i ∈ [M ]) of the probabilities of x being left

out over all elements x and ignoring the intersections of these events. Now
note that, for any element x and chain Ci, Ci contains some element on the
level of x and, by the definition of a regular cover, this is exactly as likely
to be x as it is any other element on the level. Therefore our sum becomes∑

x∈P (1− 1/|Ark(x)|)M ≤ |P |(1− 1/w)M .
In order to obtain a more convenient approximation, we note that

e−1/w =
∞∑
k=0

(−1)k

k!wk

= 1− 1

w
+

1

2w2
− 1

6w3
+ . . .

= 1− 1

w
+
∞∑
k=1

(
1

(2k)!w2k
− 1

(2k + 1)!w2k+1

)
= 1− 1

w
+
∞∑
k=1

(2k + 1)w − 1

(2k + 1)!w2k+1
> 1− 1

w
,

so P(A) < |P |e−M/w ≤ |P |e− log(2|P |) = |P |
2|P | = 1

2
. As such, P(A) > 1

2
.

Now, for each i ∈ {0, . . . , n}, let Li = dκw log(2|P |)/|Ai|e. Denote by B
the event that nx < Lrk(x) for all x ∈ P and consider P(B). In particular,
observe that we can, as before, overestimate this probability by ignoring the
intersections of events, giving us

n∑
i=0

∑
x∈P

P(∃`1, . . . , `Li
∈ [M ] distinct | x ∈ C`j ∀j ∈ [Li])
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as an upper bound. Again overestimating by summing over all possible

choices of the `j, we obtain the upper bound
∑n

i=0 |Ai|
(

1
|Ai|

)Li (
M
Li

)
.

Now note that, if we let m = w log(2|P |), we have M < m + 1 and
so M(M − 1) . . . (M − Li + 1) < (m + 1)m . . . (m − Li + 2), which, since
(m+ 1)(m− 1) = m2− 1 < m2, is less than mLi whenever Li ≥ 3. Therefore,
in these cases, we have

(
M

Li

)
<

mLi

Li!
= (em)Li

1

Li!eLi
= (em)Li

(
Li!

∞∑
k=0

Li
k

k!

)−1
< (em)Li

(
Li

Li
)−1

.

If Li = 1, we can see that
(
M
Li

)
= M < m + 1 < em = (em/Li)

Li unless

m ≤ 1
e−1 , which is impossible since 1 ≤ w and 2 ≤ |P |. If Li = 2, we have(

M
Li

)
= M(M−1)

2
< m(m+1)

2
, which is less than (em/2)2 unless m ≤ 2

e2−2 ; this

again contradicts our known bounds for m. Thus
(
M
Li

)
<
(
em
Li

)Li

in all cases.

Therefore P(B) <
∑n

i=0 |Ai|
(

em
|Ai|Li

)Li

≤
∑n

i=0 |Ai|
(
ew log(2|P |)
κw log(2|P |)

)Li

, which

is equal to
∑n

i=0 |Ai|
(
e
κ

)Li . Since κ > e, this in turn is less than or equal to∑n
i=0 |Ai|

(
e
κ

)κw log(2|P |)/|Ai| ≤
∑n

i=0 |Ai|
(
e
κ

)κ log(2|P |)
= |P |

(
e
κ

)κ log(2|P |)
. Now

note that
(
e
κ

)κ log(2|P |)
= eκ log(2|P |) log(e/κ) = (2|P |)κ(1−log κ). By Lemma 2.10,

this is at most (2|P |)−1, so P(B) < 1
2

and hence P(B) > 1
2
.

Therefore, since A and B each occur in over half of all cases, P(A∩B) > 0,
and hence there exists a choice C1, . . . CM of chains such that 0 < nx < Lrk(x)

for each x ∈ P . Henceforth, suppose that we have picked such a collection
of chains.

At this point we do not have a chain partition of P , since our chains
may overlap wholly or partially. To remedy this, we apportion elements at
random to the chains we have chosen. That is, we assign each x a random
index ιx, chosen with uniform probabilities from the set {i ∈ [M ] | x ∈ Ci}
of indices of chains containing x. For each i ∈ [M ], let Di = {x ∈ Ci | ιx = i}
be the set of elements assigned to index i. Then we can see that D1, . . . , DM

will be a chain partition of P , since each element is in exactly one of the Di

and each Di is a chain. Note that some of the Di may be empty, in which
case we will have a partition into fewer than M chains.

Now we show that there is a nonzero probability of these chains’ sizes
having the desired lower bound. Let t = |P |

2κw log(2|P |) and observe that, since
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each x has a 1
nx

chance of ending up on any of its possible chains,

E(|Di|) =
∑
x∈Ci

P(ιx = i) =
∑
x∈Ci

1

nx
≥

n∑
j=0

1

Lj − 1
>

n∑
j=0

|Aj|
κw log(2|P |)

= 2t

for each i ∈ [M ]. Therefore P(|Di| ≤ t) ≤ P(E(|Di|) − |Di| ≥ t). However,
we can view Di as the sum of the indicator variables for the independent
events ιx = i for all x ∈ Ci, so by Lemma 2.14 this latter probability is
strictly less than e−2t

2/|Cx| = e−2t
2/(n+1). By our bound for n + 1, this is at

most e− logM = 1
M

.

Therefore, P(∃i ∈ [M ] | |Di| ≤ t) ≤
∑M

i=1 P(Di ≤ t) < M
M

= 1, so the
probability that our partition does have chains sizes greater than t is nonzero.
Hence there is some partition that fulfills our criteria.

This probabilistic mode of reasoning provides an interesting alternative
to the more concrete methods of constructing chain partitions which we have
been using thus far. Unfortunately, as we have discussed, this particular
result is not of much use for our purposes, so we focus on applying the others
to the Boolean lattice.

2.2 Results on the Boolean lattice

Theorems 2.2 and 2.4, since they apply to all unimodal normalized matching
posets, are valid for the Boolean lattice, and indeed we could apply them
directly to find explicit formulae for their bounds in the case of 2[n] if we
so chose. However, as we have mentioned, obtaining a partition into chains
whose sizes have an upper bound only or a lower bound only will never be
sufficient to prove the Füredi conjecture. As such, it is desirable to obtain
chain partitions with sizes bounded both above and below.

2.2.1 An asymptotic view of the Füredi partition

In particular, we are interested in the long-term behavior of any method for
obtaining such a partition. This is to say that, since we can search for Füredi
partitions of any finite number of Boolean lattices if need be, we would really
like to know how our approach behaves on 2[n] as n becomes infinitely large.
Therefore, we turn to an asymptotic analysis. The following estimate is
well-known and will be used without proof.
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Lemma 2.15 (Stirling’s Approximation) The factorial function may be
approximated by

n! ∼
√

2πn
(n
e

)n
.

Here, ∼ denotes asymptotic equivalence; that is, for nonzero sequences
(an) and (bn), we say that an ∼ bn when the ratio an

bn
tends to 1 as n → ∞.

Stirling’s approximation can be derived in several ways, none of which we
will pursue in detail. However, we note that one possible proof involves the
following definition from complex analysis.

Definition 2.16 We define the gamma function Γ as the analytic contin-
uation of the function

s 7→
∫ ∞
0

e−tts−1 dt

defined on the open half-plane of complex numbers with positive real part to
the entire complex plane, excluding the nonpositive integers.

The reader unfamiliar with such terminology need not be unduly con-
cerned by it; for the curious, Stein and Shakarchi’s Complex Analysis [20]
gives a good introduction to the topic. Our interest in the gamma function
arises from the following well-known fact.

Lemma 2.17 Let n be a positive integer. Then Γ(n) = (n− 1)!.

The preceding identity can be used to deduce Stirling’s approximation,
which, indeed, can be applied to the gamma function more generally. This,
in turn, allows us to get a more tractable asymptotic formula for the width
of the Boolean lattice.

Lemma 2.18 The width
(

n
bn/2c

)
of the Boolean lattice 2[n] is asymptotically

equivalent to 2n
√

2
πn

.

Proof We have (
n

bn/2c

)
=

n!

bn/2c!dn/2e!
=

n!
n−cn

2
!n+cn

2
!
,
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where cn is 0 if n is even and 1 if n is odd. By Stirling’s approximation and
some algebra, this is asymptotically equivalent to

√
2πn(n/e)n

π
√
n2 − cn2

(
n−cn
2e

)n−cn
2
(
n+cn
2e

)n+cn
2

=

√
2πn(n/e)n

π
√
n2 − cn2

(
n2−cn2

4e2

)n
2

(
n+cn
n−cn

) cn
2

,

which in turn is equal to

2n

√
2n

π(n2 − cn2)
·
(
n− cn
n+ cn

)cn ( n√
n2 − cn2

)n
.

In the cases where cn = 0, this evaluates to 2n
√

2
πn

as desired. Otherwise, it

is equal to

2n

√
2n

π(n2 − 1)
· n− 1

n+ 1

(
n√

n2 − 1

)n
= 2n

√
2n

π(n+ 1)2

(
n√

n2 − 1

)n
.

Dividing by 2n
√

2
πn

to show that the result converges to 1 and hence that

the two expressions are asymptotically equivalent, we obtain√
n2

(n+ 1)2

(
n√

n2 − 1

)n
=

n

n+ 1

(
n√

n2 − 1

)n
.

Since n
n+1

converges to 1, it suffices to show that
(

n√
n2−1

)n
does as well. This

is true, although the calculations are tedious and we do not reproduce them
here.

This can be used to get an asymptotic approximation for the sizes of the
chains in a Füredi partition.

Corollary 2.19 The sizes of the chains in the Füredi partitions of 2[n] are
asymptotically equivalent to

√
π
2

√
n ≈ 1.253

√
n.

Therefore, one measure of how close we have come to proving the Füredi
conjecture is how close to this asymptotic behavior we come with the chain
partitions we know how to obtain. Hsu et al. have obtained the following
bounds.
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Theorem 2.20 ([13]) For any c > 1, the Boolean lattice 2[n] can be par-
titioned into

(
n
bn/2c

)
chains with sizes asymptotically between 0.5

√
n and

c
√
n log n.

This is to say that there are functions asymptotically equivalent to the
stated upper and lower bounds which are, respectively, an upper and a lower
bound for our chain sizes.

We will use the methods we have been developing to improve on this
result.

2.2.2 Tomon’s asymptotic bounds

Tomon’s results will allow us to deduce the following bounds.

Theorem 2.21 ([21]) For any K ≥ 2, 2[n] can be partitioned into
(

n
bn/2c

)
chains with sizes asymptotically between

√
2

(∑K
k=2

√
log(k)−

√
log(k−1)

k

)
√
n

and
√

2
(√

logK +K
√
π
)√

n.

Note that this result is a marked improvement on Theorem 2.20 in at least
one sense, since we remove the extraneous

√
log n factor in the upper bound

and so obtain chain sizes which differ from those of the Füredi partition by
a constant factor. In order to prove this fact, however, we require some
additional machinery.

Definition 2.22 We extend the notion of a binomial coefficient to the com-
plex numbers by (

x

y

)
=

Γ(x+ 1)

Γ(y + 1)Γ(x− y + 1)
,

with the stipulation that x, y, and x− y are not negative integers.

Observe that, since Γ(k + 1) = k! for all non-negative integers k, this
agrees with the usual notion of a binomial coefficient for inputs on which both
are defined. Moreover, since Stirling’s approximation applies to the gamma
function in general as well as to factorials, we can use the usual asymptotic
approximations for a binomial coefficient to estimate this generalized version.

We are now in a position to verify the bounds we have claimed. The
essential concept of the proof is that we will consider the monotone posets
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∅

[n]

Figure 2.4: An abstract illustration of the Hasse diagram of 2[n] for large n,
with the four monotone subposets which we will be considering separated by
horizontal lines.

defined by taking the top and bottom halves of the Boolean lattice, fur-
ther split each of these at some appropriately chosen level to obtain a total
of four monotone subposets, and then partition them separately, using our
technique for building chains with sizes bounded below on the middle two
and our technique for building chains with sizes bounded above on the top
and bottom. An illustration of the bounds delimiting the four subposets is
depicted in Figure 2.4.

Proof of Theorem 2.21 Fix K ≥ 2 and let N be so large that n ≥ N
implies that the width of 2[n] is greater than K, and consider arbitrary n ≥ N .
For the sake of convenience, write w =

(
n
bn/2c

)
and

αK =
√

2
K∑
k=2

√
log(k)−

√
log(k − 1)

k
.
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For any t ∈ R satisfying |t| ≤
√
n
2

, observe that, by some calculations with
Stirling’s approximation, we can obtain(

n

n/2 + t
√
n

)
∼ 2ne−2t

2

√
2

πn
.

Since we also have w ∼ 2n
√

2
πn

by Lemma 2.18, we can see that(
n

n/2 + t
√
n

)
∼ we−2t

2

.

Now, for any integer 1 ≤ k < w, define Tk to be the smallest natural
number such that

(
n

dn/2e+Tk

)
< w/k, which is to say that Tk gives the num-

ber of levels above the middle of 2[n] we need to progress to find a level of
size less than w/k. Observe by our prior approximation for the binomial
coefficient, the fact that Tk/

√
n will satisfy the bounds needed to make the

approximation valid, and the definition of asymptotic equivalence, that we
can write(

n

dn/2e+ Tk

)
=

(
n

dn/2e+ (Tk/
√
n)
√
n

)
= (1 + an)we−2Tk

2/n

for some an → 0, where the difference between dn/2e and n/2 turns out not
to make a difference, as in our approximation for w. Therefore, we have
(1 + an)we−2Tk

2/n < w/k, giving us k(1 + an) < e2Tk
2/n, or

Tk
2 >

n

2
log(k(1 + an)) =

n

2
(log k + bn),

where bn = log(1 + an) → 0. Thus Tk >
√

n
2
(log k + bn), and we can see

by the minimality of Tk that in fact Tk =
⌊√

n
2
(log k + bn)

⌋
+ 1, since this

value will satisfy the required inequality and is the smallest to do so by
our strict lower bound for Tk. Relying on the continuity of the appropriate
functions involved and the asymptotic disappearance of small error terms

when divided by
√
n, we can rewrite this as Tk = (1 + cn)

√
n log k

2
for some

cn → 0, or Tk ∼
√

n log k
2

.

Now let B0, . . . , Bn denote the levels of 2[n], let P be the induced subposet
on Bdn/2e, . . . , Bdn/2e+TK , and, for the sake of convenience, write Ai = Bdn/2e+i
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for all i ∈ {0, . . . , TK}. Let f and d be defined for P as in Lemma 2.6 and
observe for 2 ≤ k ≤ K and Tk−1 − 1 ≤ j ≤ Tk − k − 1 that f(j) = j + k,
since each of the k levels Aj+1, . . . , Aj+k has size strictly less than w/(k− 1)
and at least w/k. Since we must traverse each of these contiguous regions
of levels while approaching fd(0) through iterated application of f , we can
see by considering the number of levels in each region and the number of
iterations needed to step through them that

d ≥
K∑
k=2

⌊
Tk − Tk−1 − k + 1

k

⌋
;

since we will be at or before the start of one of these regions [Tk−1−1, Tk−k−1]
upon exiting the last by the bounds on f ’s output in the last, and since f
is monotone, this inequality is valid irrespective of f ’s behavior on the levels
between regions.

Using our asymptotic approximation for Tk, we can see that the right-
hand side here is equal to

(1 + an)
√
n/2

K∑
k=2

√
log(k)−

√
log(k − 1)

k
= (1 + an)

√
n

2
αK

for some an → 0.
By Lemma 2.6, there is a partition of P into w = |Adn/2e| chains, each of

size at least (1+bn)
√
n
2
αK for some bn → 0 and at most TK = (1+cn)

√
n logK

2

for some cn → 0.
Now let Q be the induced subposet on Bdn/2e+TK , . . . , Bn and observe that

Q is monotone with width w′ = |Bdn/2e+TK | ∼ w/K. Therefore, we can use
Lemma 2.3 to obtain a partition of Q into w chains with sizes bounded above
by 2|Q|

w′
∼ 2K|Q|

w
< 2K·2n−1

w
∼ K

√
πn
2

.
Merging our partitions of P and Q on shared elements of Bdn/2e+TK , we

obtain a partition of the top half of the Boolean lattice into chains with
sizes bounded below by some sequence Ln and above by some sequence Un

such that Ln ∼
√
n
2
αK and Un ∼

√
n logK

2
+K

√
πn
2

. By the self-duality of the

Boolean lattice, we can obtain a similar partition for the levels B0, . . . , Bbn/2c
and join the two partitions on shared elements, if bn/2c = dn/2e, or, other-
wise, by using the matching between the middle two levels which covers both
guaranteed by Proposition 1.36 to obtain a partition of 2[n] into w chains with
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sizes asymptotically bounded below by αK
√
n and asymptotically bounded

above by
√

2n logK + 2K
√

πn
2

=
√

2
(√

logK +K
√
π
)√

n.

Thus the theorem is correct. Using specific values of K gives us numeric
bounds.

Corollary 2.23 (K = 2) 2[n] can be partitioned into
(

n
bn/2c

)
chains, each of

size asymptotically between 0.588
√
n and 6.191

√
n.

Corollary 2.24 (K = 3) 2[n] can be partitioned into
(

n
bn/2c

)
chains, each of

size asymptotically between 0.690
√
n and 9.003

√
n.

Corollary 2.25 (K = 4) 2[n] can be partitioned into
(

n
bn/2c

)
chains, each of

size asymptotically between 0.736
√
n and 11.692

√
n.

Corollary 2.26 (K = 47) 2[n] can be partitioned into
(

n
bn/2c

)
chains, each

of size asymptotically between 0.841
√
n and 120.587

√
n.

We could continue in this vein, but by this point the idea has been com-
municated, and the unsatisfied reader should be capable of computing further
bounds independently. Moreover, it is clear that none of these results will
quite give us the partition into chains of size

√
π
2

√
n which we would like.

Indeed, the supremum of the coefficients on the lower bounds is around 0.848
[21], well short of the desired 1.253, and the upper bound’s coefficient will
become arbitrarily large as this is approached. That said, these results still
represent an improvement on the previously known bounds. In particular,
that Tomon’s techniques have allowed us to obtain bounds within a constant
factor of

√
n is quite remarkable, and gives hope that such techniques could

be used to yield partitions with the same asymptotic behavior as the Füredi.
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Chapter 3

Refining the Proof of Lonc’s
Theorem

We have, at this point, already dealt with Tomon’s result on one of the two
1985 conjectures, that of Füredi. We now turn to the Sands’ conjecture,
which we have also previously discussed in informal terms. Properly speak-
ing, this is no longer truly a conjecture, since its generalization by Griggs
has been proven by Lonc. Therefore, we state it as a theorem.

Theorem 3.1 (proposed in [18], proven in [17]) Letm be a positive in-
teger. Then there exists a least positive integer N(m) such that, for each
n ≥ N(m), 2[n] has a partition into chains of size exactly 2m.

Note that, both here and in the Füredi conjecture, we are positing the
existence of a partition into chains of uniform or approximately uniform size.
However, the partitions we seek here differ from the Füredi in that they are
not required to have exactly the minimum number of chains, and indeed it
is not difficult to show that they will not in general.

Since 2m will divide |2[n]| = 2n for all n ≥ m, we can see that this was, at
its face, a reasonable conjecture to make on Sands’ part. By the same token,
it would be manifestly unreasonable to expect a partition of 2[n] into chains
of size exactly c for an arbitrary positive integer c and sufficiently large n,
since c will not divide the size of any Boolean lattice unless it is a power
of 2. Griggs’ generalization of Sands’ conjecture therefore makes use of the
following notion.

Definition 3.2 Let P be a poset and c a positive integer. Then we define a

51
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c-partition of P to be a chain partition of P such that all but at most one
of the chains has size exactly c. If there is a chain with size not equal to c,
we call this the exceptional chain.

Note that, if we have a c-partition of a poset with an exceptional chain,
we can suppose without loss of generality that the exceptional chain has size
less than c, since otherwise we could split it into some number of chains of
size c and an exceptional chain satisfying the given size constraint. Indeed,
the variant of the definition which requires this is the one originally used
by Griggs, but we follow Tomon in using the given version, which is slightly
more flexible. Irrespective of this choice, however, the generalization can be
stated as follows.

Theorem 3.3 (proposed in [9], proven in [17]) Let c be a positive in-
teger. Then there exists a least positive integer N ′(c) such that, for each
n ≥ N ′(c), 2[n] has a c-partition.

Note that, since we can break an exceptional chain up into non-exceptional
chains whenever c divides |2[n]|, this does actually generalize Theorem 3.1,
and in fact N ′(2m) = N(m) for all m ∈ N from the definitions.

Although both Sands’ conjecture and its generalization have been proven,
the precise values of N(m) and N ′(c) have yet to be determined in general.
Lonc’s methodology gives the following bound.

Theorem 3.4 ([4]) Let c be a positive integer. Then N ′(c) ≤ 2236c
2

.

However, it seems unlikely that this bound is close to the true value; as we
have previously noted, for example, it has been shown that N ′(4) = N(2) = 9
[8]. We will now explicate Tomon’s 2016 paper Improved bounds on the
partitioning of the Boolean lattice into chains of equal size, exploring his
refinements to the previously stated bounds for N and N ′ and his further
generalization of Lonc’s theorem to posets beyond the Boolean lattice. As
was the case in Chapter 2, although we have made slight alterations for
increased precision, all the results we will cover are due to Tomon.

3.1 New bounds for the Sands case

Here we explore Tomon’s new proof, not of Lonc’s theorem in general, but
of the Sands case specifically. To do so, we will need some graph-theoretic
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ideas not covered in Section 1.3. For the sake of brevity, and because of
their widespread currency in mathematical circles, we will not treat them in
detail. In what follows, let G = (V,E) be a graph, and recall that we have
defined all our graphs to have finitely many vertices; though many of these
concepts have infinite analogues, it does not behoove us to become bogged
down in the details.

Definition 3.5 Consider v ∈ V . The degree of v, denoted degG(v) or
simply deg(v), is the number of edges incident to v.

Definition 3.6 A path in G is a sequence of distinct vertices v0, v1, . . . , vn ∈
V such that, for each i ∈ [n], vi−1vi ∈ E.

We say that G is connected if it contains a path between any pair of
distinct vertices.

Definition 3.7 A cycle in G is a sequence of vertices v0, v1, . . . , vn ∈ V
such that the following hold:

• For each i ∈ [n], vi−1vi ∈ E.

• The vertices v1, . . . , vn are distinct.

• v0 = vn.

If G does not contain any cycles, it is said to be acyclic.

Definition 3.8 A connected, acyclic graph is called a tree. A vertex of
degree 1 in such a graph is called a leaf.

Definition 3.9 A spanning tree of G is a graph T = (V,E ′) such that
E ′ ⊆ E and T is a tree.

Theorem 3.10 A graph has a spanning tree if and only if it is connected.

Definition 3.11 A Hamiltonian path in G is a path which contains all
vertices of G.

Note that any Hamiltonian path will define a spanning tree, since a path
is connected and cannot contain a cycle.

We are now ready to take the first step toward Tomon’s improved bound
for N(m) with the following technical lemma.
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Lemma 3.12 ([22]) Let P be a finite poset with connected comparability
graph and T = (P,ET ) a spanning tree of this graph. Consider positive
integers c and k, and suppose that, for each p ∈ P , we have nonnegative
integers ap and bp such that the following hold:

(i) The sum
∑

p∈P ap+bp has the same remainder as |P × [k]| = k|P | upon
division by c.

(ii) For each p ∈ P , c degT (p) ≤ k − ap − bp.

(iii) For each edge pq ∈ ET such that p < q, c(degT (p) + degT (q) − 1) ≤
k − ap − bq.

Then, if we let Q = (P × [k]) \
(⋃

p∈P{p} × ([ap] ∪ ([k] \ [k − bp]))
)

, Q has a

partition into chains of size exactly c.

The intuition for this lemma is as follows. Since P is a nearly arbitrary
poset, we have little hope of showing that it can be partitioned into chains
of size exactly c. Instead, we would like to consider the result of crossing it
with a sufficiently long chain — that is, of taking k copies of P stacked on
top of one another for sufficiently large k. However, if we are looking for a
partition into chains of size exactly c, which is to say a c-partition with no
exceptional chain, we will still be in trouble, since there is no guarantee that
c will divide the size of the stacked poset.

Therefore, we choose numbers ap and bp for each p ∈ P , with the idea of
removing ap + bp of the stacked copies of p to obtain a subposet Q with size
divisible by c. This need for divisibility is the reason for condition (i) in the
lemma. We choose two values ap and bp instead of just one designating how
many elements we should remove because we still need to know which copies
of p we should take away; our solution is to excise the ap lowest and the bp
highest of them.

However, to preserve our ability to reason about the structure of P , we
certainly do not want to remove all copies of p, and in fact we would like to
retain some minimum number of them, determined by the degrees of p and
its neighbors in the spanning tree we have chosen to reason about. This is
the purpose of conditions (ii) and (iii) in the lemma.

An example for a relatively uncomplicated poset with c = 2 and k = 7 is
depicted in Figure 3.1. Note that here we do not specify the spanning tree
for our poset’s comparability graph since only one is possible.
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Figure 3.1: A poset P , P × [7], and the result Q of removing some elements
from P × [7] as in Lemma 3.12.

Proof of Lemma 3.12 We proceed by induction on |P |.

Base Case: Suppose |P | = 1. Then P × [k] is a chain of size k, and hence
Q, by condition (i), is itself a chain with size divisible by c. The result
follows.

Hypothesis of Induction: Suppose |P | > 1 and assume that the result
holds for every poset with a connected comparability graph and exactly
one fewer element than P to show that it holds for P .

Inductive Step: It is not difficult to show that every finite tree has a leaf.
Therefore, let u be a leaf of our spanning tree T and v the only node
adjacent to it. Note that, in P , either u < v or v < u.

Suppose u < v. Let P ′ be the induced subposet of P on P \ {u}
and T ′ the tree obtained by removing u and its incident edge from T .
Note that T ′ is a spanning tree for P ′, since the comparability relations
between the elements of P ′ are exactly as they are in P and a tree with
a leaf removed is still a tree.
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Now we define values a′p and b′p for each p ∈ P ′. Let a′p = ap for all
p ∈ P ′; that is, the number of stacked copies of any element we will
remove from the bottom of P ′ × [k] is exactly the same as the number
we were removing from P × [k]. Likewise, we set b′p = bp for every
element p of P ′ except for v. Finally, we assign b′v = bv + s, where s is
the unique element of {0, 1, . . . , c− 1} which is congruent modulo c to

au + bu− k. Let Q′ = (P ′× [k]) \
(⋃

p∈P ′{p} × ([a′p] ∪ ([k] \ [k − b′p]))
)

.

We claim that our choice of a′p and b′p satisfies our hypotheses for P ′,
T ′, c, and k. We verify each of the three conditions independently:

(i) Note that

∑
p∈P ′

a′p + b′p =

 ∑
p∈P\{u,v}

ap + bp

+ av + bv + s.

By our choice of s, this is congruent modulo c to
(∑

p∈P ap + bp

)
−

k, which in turn is congruent to k|P | − k = k|P ′| by hypothesis.

(ii) For vertices p of P ′ other than v, we have c degT ′(p) ≤ k− a′p− b′p
by our hypotheses on the original poset, since these values are the
same as their non-primed counterparts. Therefore, it suffices to
show that c degT ′(v) + a′v + b′v ≤ k. By our definitions for a′v and
b′v and the fact that v has one fewer neighbor in T ′ than in T ,
we have c degT ′(v) + a′v + b′v = c(degT (v) − 1) + av + bv + s <
degT (v) + av + bv ≤ k since s < c.

(iii) This condition follows by reasoning similar to that for condition
(ii). Unless v is one the vertices incident to the edge we have
selected, the inequality we seek will follow immediately from our
hypotheses. Otherwise, the decrease in v’s degree will either sim-
ply do us no harm or offset the increase s from bv to b′v.

Therefore, the hypothesis of induction gives us a partition of Q′ into
chains of size c. Since we can see that Q is the disjoint union of Q′

with {v}× ([k− bv] \ [k− bv − s]), the set of extra copies of v which we
removed from Q′, and {u} × ([k − bu] \ [au]), the set of all copies of u
in Q, it now suffices to show that the union of these latter sets has a
partition into chains of size c. Let C = ({u} × ([au + c − s] \ [au])) ∪
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({v}× ([k− bv] \ [k− bv − s])) be the set containing our extra copies of
v and the c− s lowest of our copies of u. Note that we are guaranteed
that there are at least c − s such copies since the total number is
k − au − bu ≥ c degT (u) = c by condition (ii). We claim that C is a
chain; since u < v, it suffices to show that no element of [au+c−s]\[au]
is greater than an element of [k−bv]\ [k−bv−s]. As such, we need only
demonstrate au + c − s ≤ k − bv − s + 1. Rearranging this inequality,
we find that we need to show k−au− bv ≥ c−1 = c degT (u)−1. Since
k − au − bv ≥ c(degT (u) + degT (v) − 1) ≥ c degT (u) − 1 by condition
(iii), we can see that C is in fact a chain. Moreover, C contains c − s
copies of u and s copies of v, so in total it has c elements.

Finally, we note that the remaining copies of u lie on a chain and that
there are k − au − bu − (c − s) of them. Since, by the definition of
s, this value is congruent modulo c to 0, we can break this chain into
subchains of size exactly c. This completes our partition of Q into such
chains.

It remains to prove the result when v < u. The argument in this case is
similar to the preceding work, except that we leave bv unchanged and
instead set a′v = av +s, also modifying our construction of the final few
chains to account for this change.

The result follows by the induction.

Thus, if we have a poset with connected comparability graph, crossing it
with a sufficiently long chain and removing a few elements from the top and
bottom of the result gives us a poset which can be partitioned into chains
of size exactly c. Using only a very restricted case of this result, we can
conclude that the product of such a poset with a sufficiently long chain has
a c-partition (potentially with an exceptional chain).

Lemma 3.13 ([22]) Let P be a finite poset with connected comparability
graph and T = (P,ET ) any spanning tree of G(P ). Then, if we have positive
integers c and k such that, for every pq ∈ ET , c(degT (p) + degT (q)− 1) ≤ k,
P × [k] has a c-partition.

Proof If |P | = 1, the result is trivial. It is less so in the case |P | = 2,
but, because there is only one poset on two elements which has connected
comparability graph, here it is sufficient to show that, for any k ≥ c, [k]× [2]
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has a c-partition. This follows from the observation that, if r is the remainder
of k on division by c, the union of the bottom r elements with [2]-coordinate
1 and the top r elements with [2]-coordinate 2 form a chain, which we take
to be our exceptional chain; partitioning the rest of the poset into chains of
size exactly c is trivial.

Now suppose |P | ≥ 3. Let m be the remainder of |P |k on division by c,
u a leaf of T , and v its sole neighbor. As before, we will suppose that u < v,
and the v < u case will be similar with the roles of the aps and bps exchanged.
Let ap = 0 for every p ∈ P , bu = m, and bp = 0 for every element p of P other
than u. It is clear that these parameters satisfy condition (i) of Lemma 3.12.
Moreover, condition (ii) holds; if p 6= u, k − ap − bp = k, and considering
the inequality we have hypothesized for any edge incident to p yields the
result. In the case of u, we can see by the fact that P has at least 3 elements
and the fact that a tree is connected that v has at least two neighbors in T .
Thus k ≥ c(degT (u) + degT (v) − 1) ≥ c(degT (u) + 1) > c degT (u) + m, so
k − au − bu = k −m ≥ c degT (u).

Finally, we verify condition (iii). This follows immediately from our hy-
pothesized inequality for every edge other than uv, the only one incident
to u. For uv, it is sufficient to note that, since u < v, we must show that
c(degT (u) + degT (v) − 1) ≤ k − au − bv, which also follows from the hy-
pothesized inequality; our nonzero bu term never makes an impact here since
u is not adjacent in T to any element smaller than it. Thus, by Lemma
3.12, Q = (P × [k]) \ ({u} × ([k] \ [k − m])) has a partition into chains of
size exactly c. This gives us a c-partition of P with an exceptional chain
{u} × ([k] \ [k −m]) of size m.

Hence, for any poset P with a connected comparability graph, we can
use the degrees of vertices in the graph’s spanning tree to provide an upper
bound on the smallest natural number k such that P × [k] has a c-partition.
However, a connected graph does not have a single unique spanning tree, and
we can see that some trees will give better bounds than others; those where
all vertices are of low degree are particularly useful. We can use this insight
to obtain the following powerful result on grids.

Theorem 3.14 ([22]) Let c, d, and k1, . . . , kd be positive integers such that
k1 ≥ k2 ≥ . . . ≥ kd and k1 ≥ 3c. Then the grid [k1] × [k2] × . . . × [kd] has a
c-partition.
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Proof Let P = [k2] × . . . × [kd] and note that, by using induction on
the dimension of the grid, it is not especially difficult to show that every
grid’s comparability graph has a Hamiltonian path. In particular, P has
a Hamiltonian path, which gives a spanning tree where every element has
degree at most 2. Therefore, by Lemma 3.13, P × [k] has a c-partition for
every k ≥ c(2 + 2− 1) = 3c. As such, P × [k1] ∼= [k1]× [k2]× . . .× [kd] has a
c-partition.

We are now equipped to improve the previously known bound for N(m),
with one caveat. Because our argument will depend on the asymptotic lower
bound for the chain sizes of some partition of the Boolean lattice, we will
need to require that m be sufficiently large for the asymptotic behavior to
be relevant. We handle this difficulty as follows.

Theorem 3.15 ([22]) Let L > 0 be such that, for some ε > 0, the Boolean
lattices 2[n] have partitions into chains with sizes asymptotically bounded
below by (L+ ε)

√
n. Then there exists M ∈ N such that, for every m ≥M ,

N(m) ≤ m+

⌈
9

22m

L2

⌉
.

Proof For each m ∈ N, define Sm =
⌈
922m

L2

⌉
.

Observe that the Boolean lattice 2[n] has a partition into chains of size at
least (1 + an)(L + ε)

√
n for some sequence an → 0. Therefore, there exists

N ∈ N such that, for every n ≥ N , 2[n] has a partition into chains of size
at least L

√
n, since an will eventually be so small that (1 + an)(L+ ε) ≥ L.

Let M be so large that SM ≥ N and consider arbitrary m ≥ M . We can
see that Sm ≥ SM ≥ N , so 2[Sm] has a partition into chains of size at least
L
√
Sm ≥ L · 32m

L
= 3 · 2m.

Thus, 2[m+Sm] ∼= 2[Sm]× [2]m can be partitioned into the union of terms of
the form C× [2]m, where C is a chain of size at least 3 ·2m. By Theorem 3.14,
each of these terms has a 2m-partition, and since 2m divides each their sizes,
each such 2m-partition can be taken to have no exceptional chains. Thus we
have a partition of 2[m+Sm] into chains of size exactly 2m.

In order to show that N(m) ≤ m + Sm, we must prove that, for every
n ≥ m+ Sm, 2[n] has a partition into chains of size 2m. We have just proven
the case where the inequality is not strict; the other cases follow immediately
since, for any n = m + Sm + n′, we have 2[n] ∼= 2[m+Sm] × 2[n′]. Thus we can
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take all 2n
′

copies of our partition of 2[m+Sm] into chains of size 2m to yield
such a partition of 2[n].

Since the previously known bounds, those of Theorem 3.4, give the es-

timate N(m) ≤ 2236·2
2m

, this represents a substantial improvement for the
Sands case. Note that, by our work in Section 2.2, values of L satisfying
our hypotheses do exist. In particular, the application of Theorem 2.21 with
varying values of K yields a family of possible such L. For example, if we
use K = 47 and note that the coefficient on the lower bound we can achieve
is actually slightly larger than the rational approximation 0.841 we gave in
Corollary 2.25, we can conclude the following more concrete result.

Corollary 3.16 There exists M ∈ N such that, for every m ≥M ,

N(m) ≤ m+

⌈
9

22m

0.8412

⌉
≤ m+

⌈
12.725 · 22m

⌉
.

3.2 New bounds for the general case

Our bound for N(m) can also be viewed as a bound on N ′(c) for special

values of c; that is, we know that N ′(2m) ≤ log2(2
m) +

⌈
9 (2m)2

L2

⌉
for any

appropriate value of L and sufficiently large m. Therefore, it is reasonable
to wonder whether N ′(c) can be bounded above by a term on the order of c2

for more general values of c, and, in fact, such a bound does exist. We will
now build up the machinery needed to prove this assertion, starting with the
following lemma on rectangles.

Lemma 3.17 ([22]) Let c, k, `, and s be positive integers such that k ≥ `,
k ≥ c, and s ≤ k+`

c
. Then the grid P = [k] × [`] has a c-partition such that

the exceptional chain has size at least (s− 1)c.

Proof Let m be the remainder of |P | = k` on division by c and let M =
(s − 1)c + m. Then it suffices to show that we can partition P into chains
such that one is of size M and the rest are of size c.

We construct an enumeration x1, . . . , xk` of P as follows. Envision P as a
grid of points in the plane, with [k]-entry on the horizontal axis and [`]-entry
on the vertical. Then we construct our enumeration by traversing the grid
in the following manner:
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Figure 3.2: An illustration of our traversal for [5]× [4].

• Start from the upper-right corner and move element-by-element all the
way down the right edge.

• Then, for each row, starting from the bottom and moving up to the
top, begin from the rightmost element other than the one on the right
edge which we already encountered and move left element-by-element
until the end is reached.

Since our constraint on s and the fact that m < c together guarantee that
M is at most k + ` − 1, the number of elements on the bottom and right
edges of the grid combined, and since those elements form a chain in P , we
can see that x1, . . . , xM will be a chain.

Since M is equivalent modulo c to P , the number of elements left over
will be a multiple of c. If we partition these remaining elements by breaking
the sequence xM+1, . . . , xk` into chunks of c consecutive elements, we can
see that the result will be a chain partition. If we start from any element
(a, b) for a < k and keep taking subsequent elements in our enumeration, we
can see that we will need to include k + 1 elements to prevent the set we
are building from being a chain; we encounter (a, b) itself, all a − 1 of the
elements (a− 1, b), (a− 2, b), . . . , (1, b) to the left of it and in the same row,
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Figure 3.3: The 3-partition of [5] × [4] guaranteed by Lemma 3.17, using
s = 2.

and all (k−1)−(a−1) of the elements (k−1, b+1), (k−2, b+1), . . . , (a, b+1)
one row up and neither strictly to the left of it nor in the rightmost column
before we obtain an incomparable element (a− 1, b+ 1).

If, on the other hand, the element we start with is of the form (k, b),
we will still need at least k + 1 elements to generate a non-chain, since
the ordering traverses the k elements of the bottom row, which are each
comparable to every element of the rightmost column, after finishing with
this column. Since k ≥ c, this means that all of our chunks of c consecutive
elements will be chains.

As such, we have partitioned P into chains such that one is of size M and
the rest are of size c. M ≥ (s− 1)c, so the result follows.

It is useful to have a c-partition with some guarantee that the exceptional
chain will be long, since this means that the partition preserves more infor-
mation about the relations in the original poset and hence will be easier to
work with in proving other results.

We now generalize to the case of a grid of arbitrary dimension.

Theorem 3.18 ([22]) Let c, d, and k1, . . . , kd be positive integers such that
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k1 ≥ k2 ≥ . . . ≥ kd and, for each 1 ≤ i ≤ d− 1,

i∑
j=1

⌊
kj
c

⌋
≥ i.

Then [k1]× . . .× [kd] has a c-partition with exceptional chain of size at least(
d∑
j=1

⌊
kj
c

⌋
− (d− 1)

)
c.

Proof The proof is by induction on d.

Base Case: Suppose d = 1. Then the result is immediate since the whole
poset is a chain of size k1 ≥ c

⌊
k1
c

⌋
.

Hypothesis of Induction: Suppose the result holds for some d ≥ 1 to
show that it holds for d+ 1.

Inductive Step: Let k1, k2, . . . , kd, kd+1 be positive integers such that k1 ≥
k2 ≥ . . . ≥ kd ≥ kd+1 and, for any 1 ≤ i ≤ d,

i∑
j=1

⌊
kj
c

⌋
≥ i.

Then we can apply our hypothesis of induction to obtain a c-partition
of [k1]× . . .× [kd] such that the exceptional chain has size at least(

d∑
j=1

⌊
kj
c

⌋
− (d− 1)

)
c.

Let C1, . . . , Cr be the chains of this partition, with C1 the exceptional
chain. Then we can partition [k1] × . . . × [kd+1] into rectangles by
[k1] × . . . × [kd+1] =

⋃r
i=1Ci × [kd+1]. For i ≥ 2, Ci is a chain of size

c, so Ci × [kd] can be partitioned into kd chains of size exactly c in the
obvious way.

Thus it suffices to obtain a c-partition of C1× [kd] with an exceptional
chain satisfying our size constraint. Since

|C1| ≥

(
d∑
j=1

⌊
kj
c

⌋
− (d− 1)

)
c ≥ (d− (d− 1))c = c
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by hypothesis, using Lemma 3.17 with s =
⌊
|C1|+kd+1

c

⌋
gives us a c-

partition of this rectangle with exceptional chain size at least(⌊
|C1|+ kd+1

c

⌋
− 1

)
c ≥

(⌊
|C1|
c

⌋
+

⌊
kd+1

c

⌋
− 1

)
c.

Since ⌊
|C1|
c

⌋
≥

d∑
j=1

⌊
kj
c

⌋
− (d− 1),

the desired inequality for the size of the exceptional chain follows.

The induction proves the claim.

We nearly ready to demonstrate an improved bound for N ′. Before we
do so, however, we must introduce one additional concept.

Definition 3.19 ([6]) The Gray code is a sequence x1, x2, . . . of finite sub-
sets of N defined recursively by x1 = ∅ and x2m+i = x2m−(i−1) ∪ {m + 1} for
every nonnegative integer m and i ∈ [2m].

This sequence was first developed by physicist Frank Gray as a way to
minimize errors in transmitted binary information; the formulation we are
using is due to Tomon [22]. The usefulness of the code for Gray was in
the fact that each pair of consecutive subsets differs by exactly one element;
we achieve this property recursively by, once we have traversed the Boolean
lattice 2[m], performing a reversed version of the same traversal in the copy
of 2[m] given by {S ∪ {m+ 1} | S ∈ 2[m]} to complete our traversal of 2[m+1].
The path this traversal takes through 2[4] is illustrated in Figure 3.4.

Indeed, the definition of the Gray code makes the following fact clear.

Lemma 3.20 Let x1, x2, . . . denote the Gray code and m be a positive in-
teger. Then the finite sequence x1, . . . , x2m is a Hamiltonian path in the
comparability graph of 2[m].

We will also need some properties of a particular subsequence of the Gray
code defined by Tomon.

Lemma 3.21 ([22]) Define a sequence `1, `2, . . . of positive integers recur-
sively by `1 = 2 and, for i ≥ 2, `i = 2i+1 + 1 − `i−1. Then x`1 ⊂ x`2 ⊂ . . .
and, for every positive integer i, x`i−1 ⊂ x`i ⊂ x`i+1 if i is odd and x`i−1 ⊃
x`i ⊃ x`i+1 if i is even.
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∅

{1} {2} {3} {4}

{1, 2} {1, 3} {1, 4}{2, 3} {2, 4} {3, 4}

{1, 2, 3} {1, 2, 4} {1, 3, 4} {2, 3, 4}

{1, 2, 3, 4}

Figure 3.4: The first 16 terms of the Gray code, drawn as a traversal of the
Boolean lattice 2[4].

These results may be proven by an inductive argument; note that `i is
defined so that x`i = x`i−1

∪ {i + 1} and that x`1 = x2 = {1} occupies a
position in the Gray code such that it is above the preceding element and
below its successor.

We are now ready to state and prove Tomon’s improved bounds.

Theorem 3.22 ([22]) Let L > 0 be such that, for some ε > 0, the Boolean
lattices 2[n] have partitions into chains with sizes asymptotically bounded
below by (L + ε)

√
n. Then there exists C ∈ N such that, for every c ≥ C,

N ′(c) ≤ 5
⌈
49c2

L2

⌉
+ 6.

Proof As in the proof of Theorem 3.15, let N ∈ N be so large that, for
every n ≥ N , 2[n] has a partition into chains of size at least L

√
n, let C be

so large that
⌈
49C2

L2

⌉
≥ N , and consider arbitrary c ≥ C.

Then, if we set k0 =
⌈
49c2

L2

⌉
, we can see that 2[k0] has a partition into

chains of size at least L
√
k0 ≥ 7c. Fix arbitrary k ≥ k0 and let t be the

unique element of {3c, 3c+ 1, . . . , 4c− 1} which is congruent modulo c to 2k.

We will now partition 2[k] into two posets Q and R so that the size of Q
is divisible by c and R is a chain. Let x1, x2, . . . denote the Gray code and
let `1, `2, . . . be defined as in Lemma 3.21. Define R = {x`1 , . . . , x`t}, and
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note that R is a subset of 2[k], since the largest element of each `i is i + 1
and t+ 1 ≤ 4c ≤ k0 by virtue of the fact that L2 is necessarily at most π

2
per

Corollary 2.19. Moreover, R is a chain by the first claim of Lemma 3.21.
Let Q = 2[k]\R. Note that Q has a Hamiltonian path defined by removing

the elements of R from the sequence x1, . . . , x2k ; by the second claim of
Lemma 3.21, the terms of the sequence immediately before and after those
we remove will be comparable, so the revised sequence remains a path.

Now consider 2[km] ∼= (2[k])m for some m ∈ {2, 3} to show that it has a
c-partition with exceptional chain size at least 5c. Since 2[km] ∼= (Q ∪ R)m,
we can see that the poset can be written as the disjoint union of Cartesian
products of some number of Qs and Rs. Each of these terms is isomorphic
to Qs × Rm−s for some integer 0 ≤ s ≤ m. We will consider the individual
possibilities for such a term.

Suppose s ≥ 2. Then Qs × Rm−s can be partitioned into chains of size
exactly c; to show this, it is sufficient to show that Q2 has such a partition,
since Qs×Rm−s is the product of Q2 with another poset. Since k ≥ k0 implies
that 2k can be partitioned into chains C1, . . . , Cr of size at least 7c, we can
partition Q into chains C1\R, . . . , Cr\R of size at least 7c−|R| = 7c−t > 3c.
Hence Q2 has a partition into posets Q × (Ci \ R); since Q has a spanning
tree where each element has degree no more than 2, |Ci \R| ≥ 3c gives us a
c-partition of Q × (Ci \ R) by Lemma 3.13. Since Q has size divisible by c,
we can take this to have chains of size exactly c.

Similarly, if s = 1, then m − s ≥ 1 and so Qs × Rm−s is the product of
Q× R with some other poset. Since R is a chain of size t ≥ 3c and Q has a
Hamiltonian path, Lemma 3.13 gives us a partition of Q × R into chains of
size exactly c as before. Thus Qs ×Rm−s has such a partition as well.

Finally, we must consider the case where s = 0 and hence Qs × Rm−s =
Rm. Since |R| ≥ 3c, Theorem 3.18 easily gives us a c-partition of Rm where
the exceptional chain has size at least(

m∑
j=1

⌊
|R|
c

⌋
− (m− 1)

)
c ≥ (3m− (m− 1))c = (2m+ 1)c ≥ 5c.

Taken together, these results give us the desired partition of 2[km].
Now consider arbitrary n ≥ 5k0 + 6. Since 2 and 3 are coprime, there

is an integer linear combination 2n1 + 3n2 of these two values equal to n;
by the bound on n, there is such a combination with n1, n2 ≥ k0. As such,
2[n] ∼= 2[2n1]×2[3n2], and we can obtain chain partitions C0, C1, . . . , Cs of 2[2n1]
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and C ′0, C
′
1, . . . , C

′
s′ of 2[3n2] such that |C0|, |C ′0| ≥ 5c and all other chains have

size c. Hence 2[n] can be partitioned into rectangles Ci × C ′j for 0 ≤ i ≤ s
and 0 ≤ j ≤ s′. If either i or j is nonzero, Ci × C ′j has a trivial partition
into chains of size exactly c. Moreover, since |C0| ≥ 5c ≥ c, C0 × C ′0 has a
c-partition by Lemma 3.17. These partitions together give us a partition for
2[n], proving the claim.

As in the case of Theorem 3.15, we can use one of our previous results
in Section 2.2 to obtain a more explicit bound. For example, using Theorem
2.21 with K = 47 gives us the following result.

Corollary 3.23 There exists C ∈ N such that, for every c ≥ C,

N ′(c) ≤ 5

⌈
49c2

0.8412

⌉
+ 6 ≤ 5

⌈
69.28c2

⌉
+ 6.

Of course, all of the bounds we have provided are somewhat less useful
than we might like, since they rely on the asymptotic behavior of certain
families of chain partitions and hence require c to satisfy some nebulously-
defined lower bound. Nevertheless, they represent important progress toward
understanding the behavior of N ′ and invite further study. In particular, it
may be of interest to determine the actual value of C in Corollary 3.23 or a
similar result and hence to ascertain whether the requirement c ≥ C actually
requires us to exclude very many cases.

3.3 Generalizing Lonc’s theorem

Finally, we make note of a further generalization of Lonc’s theorem proven by
Tomon [22]. Although it might seem natural to try to generalize to the case
of an arbitrary unimodal normalized matching poset, as Tomon has proposed
for the Füredi conjecture, this is not possible naively since we require some
family of posets parameterized by a natural number in order to state the
claim. Instead, we recall that 2[n] ∼= [2]n and hence generalize to the powers
of other posets as follows.

Theorem 3.24 ([22]) Let P be a finite poset with connected comparability
graph and c a positive integer. Then there is a least positive integer N(P, c)
such that, for each n ≥ N(P, c), P n has a c-partition.
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Thus Lonc’s theorem is really the simplest case of a much more general
fact about powers of posets. Since our focus is on the Boolean lattice, and
the proof of this result is actually quite similar to that of Theorem 3.22,
we will not go into detail; for the curious, the argument may be found in
Tomon’s original paper [22]. We would, however, like to note that the proof
uses the following result, which is interesting in its own right.

Theorem 3.25 ([22]) Let P be a finite poset whose comparability graph
contains no isolated elements. Then there exists a constant cP > 0 such that
P n can be partitioned into chains with sizes asymptotically bounded below
by cP

√
n.
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Conclusions and Future Work

This concludes our study of Tomon’s results. The methodology he has intro-
duced is groundbreaking, far outdoing the previously known approaches to
the problems which we have examined. However, much work remains to be
done in both cases.

Although Tomon’s bounds of Section 2.2 are quite good, they, as we
have noted, still fall short of the asymptotic behavior of the Füredi parti-
tion. Moreover, there is reason to believe that a straightforward refinement
of such methods cannot be capable of rectifying this. We have seen that
the application of Theorem 2.21 involves a trade-off between the quality of
the upper and lower bounds, depending on the choice of K, and this limita-
tion seems fundamental to Tomon’s approach; if we bifurcate a half of the
Boolean lattice, partition each part separately into chains, and then merge
the partitions, there will always be variation among the chain sizes on the
order of the rank of the portion of the half-lattice which does not contain the
lattice’s largest level. Therefore, it seems likely that yet more sophisticated
techniques which consider the Boolean lattice as a whole instead of piece-
meal, or at least use a deeper method of joining the partitions of the two
half-lattices, will ultimately be needed.

In the case of Lonc’s theorem, Tomon’s bounds are very promising. As
we have mentioned, we believe it worthy of study whether the requirement
that the chain sizes we are searching for be sufficiently large in order for the
bounds to apply really makes much of an impact. In addition, the question
of whether these bounds are the best possible has yet to be answered. Tomon
does not believe so; rather, he proposes the following conjecture.
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Conjecture 4.1 ([22]) Let c be a positive integer. Then N ′(c) = n0+Λ(c),
where Λ(c) is a term on the order of log c and n0 is the smallest positivie
integer such that

2n0(
n0

bn0/2c

) > c.

The role of the n0 term here is to guarantee that the chains of the Füredi
partition are at least as large as those we are trying to find; if this condition
is not met, it is relatively easy to see that we have no hope of obtaining a
c-partition. However, no proof of this result has yet been discovered.

Thus these areas of inquiry remain quite open. For our part, we believe
that the most promising route to the Füredi partition and to precise values
of N ′(c) is through further study of the Griggs conjecture [9], to which we
alluded in the our introduction. In particular, the set of possible collections
of chain sizes for a partition proposed by Griggs itself forms a poset, the
structure of which does not seem to have been studied in detail; a better
understanding of this object and the relationship it bears to the Boolean
lattice has the potential to be very useful in our efforts to obtain concrete
chain partitions corresponding to each of its elements.
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